组合数学--卡特兰数

原理:

令h(0)=1,h(1)=1,catalan数满足递推式:h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2)
例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2
h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5
另类递推式:
h(n)=h(n-1)*(4*n-2)/(n+1);
递推关系的解为:
h(n)=C(2n,n)/(n+1) (n=0,1,2,...)
递推关系的另类解为:
h(n)=c(2n,n)-c(2n,n-1)(n=0,1,2,...)

其前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ...

应用

括号化

矩阵连乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n-1)种)

出栈次序


一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?

蓝桥杯真题:
2,出栈次序
    X星球特别讲究秩序,所有道路都是单行线。一个甲壳虫车队,共16辆车,按照编号先后发车,夹在其它车流中,缓缓前行。
    路边有个死胡同,只能容一辆车通过,是临时的检查站,如图【p1.png】所示。
    X星球太死板,要求每辆路过的车必须进入检查站,也可能不检查就放行,也可能仔细检查。
    如果车辆进入检查站和离开的次序可以任意交错。那么,该车队再次上路后,可能的次序有多少种?
    为了方便起见,假设检查站可容纳任意数量的汽车。
    显然,如果车队只有1辆车,可能次序1种;2辆车可能次序2种;3辆车可能次序5种。
    现在足足有16辆车啊,亲!需要你计算出可能次序的数目。
    这是一个整数,请通过浏览器提交答案,不要填写任何多余的内容(比如说明性文字)。 
  

直接套模板:
#include<cstdio>

using namespace std;

int main(int argc,char *argv[])
{
  long long pre=1;
  long long cur=1;
  for(int i=1;i<=16;i++)
  {
    cur=pre*(4*i-2)/(i+1);
    pre=cur;
  }
  printf("%lld\n",cur);

  return 0;
}


你可能感兴趣的:(组合数学--卡特兰数)