Analysis of Negative Sampling Methods for Knowledge Graph Embedding
摘要负采样是一种用于加速知识图嵌入学习和最大化嵌入模型在链接预测和实体解析等支持任务中的有效性的方法。负采样对于提高准确性、减少偏差、提高效率和改善代表性至关重要。本文仔细研究了在基准数据集Fb15k上,张量分解和平移嵌入模型的两种基本负采样技术增加每正负采样数量的后果。对于均匀抽样和伯努利抽样,值得注意的是,基于每阳性负的数量增加而显示性能变化的模式。我们的目标是确定不同的负采样参数对张量分解模