E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
深度学习面试题
AIGC视频生成模型:ByteDance的PixelDance模型
热门专栏机器学习机器学习笔记合集
深度学习
深度学习
笔记合集优质专栏回顾:机器学习笔记
深度学习
笔记多模态论文笔记AIGC—图像文章目录热门专栏机器学习
深度学习
好评笔记
·
2025-03-11 21:09
AIGC
音视频
机器学习
人工智能
深度学习
计算机视觉
transformer
1.动手学习
深度学习
课程安排及
深度学习
数学基础
视频资源B站:动手学习
深度学习
——李沐目录目标内容将学到什么1.N维数组样例2.访问2维数组元素3.数据操作4.线性代数5.矩阵计算6.自动求导目标介绍
深度学习
景点和最新模型LeNetAlexNetVGGResNetLSTMBERT
Unknown To Known
·
2025-03-11 21:09
动手学习深度学习
深度学习
人工智能
MySQL有哪些高可用方案?
面试题
。希望对大家有帮助;MySQL有哪些高可用方案?
java1234_小锋
·
2025-03-11 21:09
mysql
java
开发语言
SpringBoot为什么默认使用CGLIB?
面试题
。希望对大家有帮助;SpringBoot为什么默认使用CGLIB?
java1234_小锋
·
2025-03-11 21:39
java
java
开发语言
如何快速定位慢SQL?
面试题
。希望对大家有帮助;如何快速定位慢SQL?1000道互联网大厂Java工程师精选
面试题
-Java资源分享网快速定位慢SQL的过程可以通过以下几种方法来实现。
java1234_小锋
·
2025-03-11 21:38
mysql
java
面试
开发语言
动手学
深度学习
V2.0(Pytorch)——10.感知机(激活函数)
文章目录1.感知机2.多层感知机2.1异或问题2.2单隐藏层2.3激活函数2.3.1logistics函数/sigmoid激活函数2.3.2tanh函数2.3.3sigmoid函数和tanh函数的异同/优缺点2.3.4relu2.4多类分类2.5多隐藏层3Q&A3.1神经网络中一层的定义是什么3.2感知机无法解决XOR问题,多层感知机虽然可以解决,但是还是被SVM替代是为什么?3.3不同任务的激活
吨吨不打野
·
2025-03-11 21:08
动手学深度学习pytorch
pytorch
深度学习
机器学习
Spark常见
面试题
目(1)
Spark有哪几种部署的方式,谈谈方式都有哪些特点第一种是local本地部署,通常就是一台机器用于测试。第二种是standalone部署模式,就是一个master节点,控制几个work节点,其实一台机器的standalone模式就是它自己即是master,又是work。第三种是yarn模式,就是吧spark交给yarn进行资源调度管理。第四种就是messon模式,这种在国内很少见到。Spark主备
冰火同学
·
2025-03-11 20:58
Spark
spark
面试
大数据
【TVM教程】为 Mobile GPU 自动调优卷积网络
ApacheTVM是一个深度的
深度学习
编译框架,适用于CPU、GPU和各种机器学习加速芯片。
·
2025-03-11 19:35
深度学习
训练中GPU内存管理
文章目录概述常见问题1、设备选择和数据迁移2、显存监控函数3、显存释放函数4、自适应batchsize调节5、梯度累积概述在
深度学习
模型训练中,主流GPU显存通常为8GB~80GB,内存不足会导致训练中断或
@Mr_LiuYang
·
2025-03-11 19:24
遇到过的问题
内存管理
内存溢出
out
of
memory
GPU内存
深度学习
pytorch之简单方法自定义9类卷积即插即用
本文详细解析了PyTorch中torch.nn.Conv2d的核心参数,通过代码示例演示了如何利用这一基础函数实现多种卷积操作。涵盖的卷积类型包括:标准卷积、逐点卷积(1x1卷积)、非对称卷积(长宽不等的卷积核)、空洞卷积(扩大感受野)、深度卷积(逐通道滤波)、组卷积(分组独立处理)、深度可分离卷积(深度+逐点组合)、转置卷积(上采样)和动态卷积(动态生成卷积核),帮助读者理解如何通过调整参数灵活
@Mr_LiuYang
·
2025-03-11 19:53
计算机视觉基础
卷积类型
非对称卷积
深度卷积
空洞卷积
组卷积
深度可分离卷积
动态卷积
一学就会的
深度学习
基础指令及操作步骤(5)使用预训练模型
文章目录使用预训练模型加载预训练模型图像加载与预处理预测使用预训练模型查看模型库和常用模型加载预训练模型fromtorchvision.modelsimportvgg16#VGG16模型架构的定义fromtorchvision.modelsimportVGG16_Weights#VGG16的预训练权重配置#loadtheVGG16network*pre-trained*ontheImageNetd
小圆圆666
·
2025-03-11 19:53
深度学习
人工智能
python
卷积神经网络
深度学习
PyTorch之数据加载DataLoader
深度学习
pytorch之简单方法自定义9类卷积即插即用文章目录数据加载基础架构1、Dataset类详解2、DataLoader核心参数解析3、数据增强数据加载基础架构核心类关系图torch.utils.data
@Mr_LiuYang
·
2025-03-11 18:49
计算机视觉基础
深度学习
pytorch
人工智能
XGBoost常见
面试题
(五)——模型对比
XGBoost与GBDT的区别机器学习算法中GBDT和XGBOOST的区别有哪些?-知乎基分类器:传统GBDT以CART树作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。导数:传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。同时xgboo
月亮月亮要去太阳
·
2025-03-11 18:15
机器学习
经验分享
leetcode-sql数据库
面试题
冲刺(高频SQL五十题)
题目:2356.每位教师所教授的科目种类的数量表:Teacher±------------±-----+|ColumnName|Type|±------------±-----+|teacher_id|int||subject_id|int||dept_id|int|±------------±-----+在SQL中,(subject_id,dept_id)是该表的主键。该表中的每一行都表示带有t
我想吃烤肉肉
·
2025-03-11 17:39
sql
测试面试
数据库
leetcode
sql
深度学习
:马氏距离
马氏距离(MahalanobisDistance)是一种用于计算不同维度数据点之间距离的度量方法。它考虑了数据的协方差结构,因此在处理具有相关性的多维数据时更加有效。与欧氏距离不同,马氏距离不仅考虑了各个变量的量纲,还考虑了它们之间的相关性。公式马氏距离计算两个向量(x)和(y)之间的距离,定义为:DM(x,y)=(x−y)TS−1(x−y)\D_M(x,y)=\sqrt{(x-y)^TS^{-1
壹十壹
·
2025-03-11 16:55
深度学习
深度学习
人工智能
深度学习
:CPU和GPU算力
GPU算力:图形处理单元用于并行处理的能力,尤其是在
深度学习
壹十壹
·
2025-03-11 16:55
深度学习
深度学习
gpu算力
人工智能
深度学习
:偏差和方差
偏差(Bias)偏差衡量了模型预测值的平均值与真实值之间的差距。换句话说,偏差描述了模型预测的准确度。一个高偏差的模型容易出现欠拟合,即模型无法捕捉数据中的真实关系,因为它对数据的特征做出了错误的假设。特征:高偏差的模型通常是过于简单的模型,无法对数据中的复杂关系进行准确建模。高偏差模型的训练误差和测试误差可能都较高。解决方法:增加模型复杂度:例如增加多项式的阶数、增加神经网络的层数等。使用更多的
壹十壹
·
2025-03-11 16:25
深度学习
深度学习
人工智能
python
机器学习
面试了一个 7 年 Java 程序员,结果真让我哭笑不得。。。
模拟面试之前,说自己八股文准备好了,面试完,竟然连许多常见的八股文都答不上来,而且他还很疑惑地问我:“你们的
面试题
是哪来的?怎么和我
·
2025-03-11 15:29
java
基于transformer实现机器翻译(日译中)
解码器和注意力机制来实现机器翻译模型2.0含注意力机制的编码器—解码器2.1读取和预处理数据2.2含注意力机制的编码器—解码器2.3训练模型2.4预测不定长的序列2.5评价翻译结果三、使用Transformer架构和PyTorch
深度学习
库来实现的日中机器翻译模型
小白_laughter
·
2025-03-11 15:46
课程学习
transformer
机器翻译
深度学习
【NLP 39、激活函数 ⑤ Swish激活函数】
我的孤独原本是座荒岛,直到你称成潮汐,原来爱是让个体失序的永恒运动——25.2.25Swish激活函数是一种近年来在
深度学习
中广泛应用的激活函数,由GoogleBrain团队在2017年提出。
L_cl
·
2025-03-11 14:44
NLP
自然语言处理
人工智能
SeisMoLLM: Advancing Seismic Monitoring via Cross-modal Transfer with Pre-trained Large Language
摘要
深度学习
的最新进展给地震监测带来了革命性变化,但开发一个能在多个复杂任务中表现出色的基础模型仍然充满挑战,尤其是在处理信号退化或数据稀缺的情况时。
UnknownBody
·
2025-03-11 12:29
LLM
Daily
Multimodal
语言模型
人工智能
自然语言处理
C# &Unity 唐老狮 No.8 模拟
面试题
本文章不作任何商业用途仅作学习与交流安利唐老狮与其他老师合作的网站,内有大量免费资源和优质付费资源,我入门就是看唐老师的课程打好坚实的基础非常非常重要:全部-游习堂-唐老狮创立的游戏开发在线学习平台-PoweredByEduSoho如果你发现了文章内特殊的字体格式,那是AI补充的知识,我发现原网站下面有答案,我将会把答案以不同样式穿插在回答之中目录C#1.如果我们想为Unity中的Transfor
咩咩-哈基米版
·
2025-03-11 12:57
C#
&&
Unity
面试题与算法合集
c#
unity
开发语言
java
面试题
框架篇
文章目录1.Spring框架1.1Spring两大核心:IOC与AOPIOCDIAOP切面=切入点表达式+通知方法关于JDK代理和CGlib代理总结(高程/架构)!!!AOP常用注解1.2BeanFactory(懒加载初始bean)和ApplicationContext(立即初始bean)有什么区别1.3Spring框架用到了哪些设计模式1.4spring框架的优缺点1.5Spring常用注解2.
老汤姆.
·
2025-03-11 12:55
面试
java
spring
boot
开发语言
如何通过
深度学习
优化操作系统中的故障诊断与恢复机制
如何通过
深度学习
优化操作系统中的故障诊断与恢复机制(副标题:智能监控、自适应诊断与自动恢复——操作系统故障自愈的新方向)摘要随着现代操作系统在多核、高并发和分布式环境中的广泛应用,系统故障及其恢复问题日益成为影响系统稳定性和业务连续性的关键挑战
金枝玉叶9
·
2025-03-11 11:21
程序员知识储备1
程序员知识储备2
程序员知识储备3
深度学习
人工智能
做了6年的Java,mysql去重查询方法
这篇文章总结了许多关于MySQL方面的知识总结,以及面试多家总结出来的常问
面试题
,希望
m0_57768082
·
2025-03-11 11:17
程序员
java
经验分享
面试
成功案例丨开发时间从1小时缩短到3分钟:如何利用历史数据训练AI模型,预测设计性能?
在其首个AI驱动项目——摩托车把手设计优化中,Hero采用了PhysicsAI™几何
深度学习
解决方案,利用历史数据训练AI模型并预测设计性能。A
Altair澳汰尔
·
2025-03-11 11:45
PhysicsAI
仿真
AI
机器学习
HyperWorks
数据分析
关于两次项目的学习感悟
经过这两次项目,我学到了以下几点:1.模块化与结构化思维:代码展示了如何将
深度学习
任务分解为多个模块(如数据加载、模型定义、训练循环、评估等)。
罗婕斯特
·
2025-03-11 10:43
大数据
面试题
之webpack file-loader和url-loader
在面试中,关于Webpack中file-loader和url-loader的区别是一个常见的问题。file-loader和url-loader的区别1.功能定义file-loader:主要用于处理静态资源文件(如图片、字体等),将其复制到输出目录,并返回文件的URL。适用于较大文件或需要单独存储的资源。url-loader:是file-loader的扩展,它在处理文件时会先判断文件大小。如果文件大
阿丽塔~
·
2025-03-11 10:39
webpack
前端
node.js
面试
高级java每日一道
面试题
-2025年2月20日-数据库篇-大表如何优化 ?
如果有遗漏,评论区告诉我进行补充面试官:大表如何优化?我回答:在Java高级面试中讨论大表优化问题时,理解并能详细阐述各种优化策略和技术实现是至关重要的。以下是结合提供的信息进行综合后的详细解析:大表优化的背景当数据库中的单表记录数变得非常庞大时,数据库操作(CRUD)的性能会显著下降,这不仅影响应用的响应速度,还可能导致系统资源耗尽,影响业务的稳定性。因此,对大表进行有效的优化是提升数据库性能的
java我跟你拼了
·
2025-03-11 10:09
java每日一道面试题
数据库
java
大表优化
索引
分页
Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务
近年来,随着
深度学习
技术的快速发展,基于神经网络序列到序列(Sequence-to-Seq
AGI大模型与大数据研究院
·
2025-03-11 09:03
程序员提升自我
硅基计算
碳基计算
认知计算
生物计算
深度学习
神经网络
大数据
AIGC
AGI
LLM
Java
Python
架构设计
Agent
程序员实现财富自由
面试题
之react useMemo和uesCallback
在面试中,关于React中的useMemo和useCallback的区别是一个常见的问题。useMemo和useCallback的区别1.功能定义useMemo:用于缓存计算结果,避免在每次组件渲染时重新计算复杂的值。它接受一个计算函数和一个依赖数组,只有当依赖项发生变化时,才会重新计算。useCallback:用于缓存函数实例,避免在每次组件渲染时创建新的函数。它接受一个函数和一个依赖数组,只有
阿丽塔~
·
2025-03-11 09:33
react.js
前端
前端框架
Python第十六课:
深度学习
入门 | 神经网络解密
本节目标理解生物神经元与人工神经网络的映射关系掌握激活函数与损失函数的核心作用使用Keras构建手写数字识别模型可视化神经网络的训练过程掌握防止过拟合的基础策略一、神经网络基础(大脑的数字化仿生)1.神经元对比生物神经元人工神经元树突接收信号输入层接收特征数据细胞体整合信号加权求和(∑(权重×输入)+偏置)轴突传递电信号激活函数处理输出2.核心组件解析激活函数:神经元的"开关"(如ReLU:max
程之编
·
2025-03-11 09:03
Python全栈通关秘籍
python
神经网络
青少年编程
每日
面试题
-TCP 和 UDP 有什么区别?
TCP(传输控制协议)和UDP(用户数据报协议)是传输层的两大核心协议,主要区别如下:核心差异对比连接模式TCP:面向连接,需通过三次握手建立可靠通道。UDP:无连接,直接发送数据报,无需预先协商。可靠性TCP:提供数据确认、重传、校验和流量控制,确保数据完整有序到达。UDP:不保证可靠性,可能丢包、乱序,无重传机制。传输方式TCP:基于字节流传输,数据按顺序重组(如文件下载)。UDP:基于独立数
晚夜微雨问海棠呀
·
2025-03-11 09:31
tcp/ip
udp
网络协议
【大模型开发】深入解析 DeepSpeed:原理、核心技术与示例代码
深入解析DeepSpeed:原理、核心技术与示例代码DeepSpeed是由微软开源的高性能
深度学习
训练优化引擎,专注于帮助研究人员和工程团队在分布式环境中高效地训练超大规模模型。
云博士的AI课堂
·
2025-03-11 08:57
大模型技术开发与实践
哈佛博后带你玩转机器学习
深度学习
大模型开发
大模型微调
deepseek
deepspeed
python
人工智能
pytorch
一学就会的
深度学习
基础指令及操作步骤(6)迁移学习
文章目录迁移学习模型准备数据增强模型训练模型微调和预测检查预测结果迁移学习迁移学习是将一个任务中学到的知识应用到另一个相关任务上,以提高新任务的学习效率和性能。优势:节省训练时间,提高模型性能,尤其在小数据场景下效果显著。核心是利用源域的知识来帮助目标域任务,比如在ImageNet上预训练的模型用于医疗影像分类。源域(SourceDomain):已有知识的领域(如ImageNet图像库)。目标域(
小圆圆666
·
2025-03-11 07:49
深度学习
迁移学习
人工智能
卷积神经网络
基于PyTorch的
深度学习
6——数据处理工具箱2
torchvision有4个功能模块:model、datasets、transforms和utils。主要介绍如何使用datasets的ImageFolder处理自定义数据集,以及如何使用transforms对源数据进行预处理、增强等。下面将重点介绍transforms及ImageFolder。transforms提供了对PILImage对象和Tensor对象的常用操作。1)对PILImage的常
Wis4e
·
2025-03-11 07:47
深度学习
pytorch
人工智能
基于PyTorch的
深度学习
——机器学习3
激活函数在神经网络中作用有很多,主要作用是给神经网络提供非线性建模能力。如果没有激活函数,那么再多层的神经网络也只能处理线性可分问题。在搭建神经网络时,如何选择激活函数?如果搭建的神经网络层数不多,选择sigmoid、tanh、relu、softmax都可以;而如果搭建的网络层次较多,那就需要小心,选择不当就可导致梯度消失问题。此时一般不宜选择sigmoid、tanh激活函数,因它们的导数都小于1
Wis4e
·
2025-03-11 07:47
深度学习
机器学习
pytorch
深度学习
与普通神经网络有何区别?
深度学习
与普通神经网络的主要区别体现在以下几个方面:一、结构复杂度普通神经网络:通常指浅层结构,层数较少,一般为2-3层,包括输入层、一个或多个隐藏层、输出层。
是理不是里
·
2025-03-11 06:39
深度学习
神经网络
人工智能
AI 技术 引入 RTK(实时动态定位)系统,可以实现智能化管理和自动化运行
AI解决方案:使用
深度学习
模型(如卷积神经网络CNN)预测整周模糊度。通过历史数据训练模型,实现快速解算。实例:某无人机公司使用A
小赖同学啊
·
2025-03-11 06:39
人工智能
低空经济
人工智能
自动化
运维
AI 驱动的软件测试革命:从自动化到智能化的进阶之路
人工智能技术的突破为测试领域注入了新动能,通过机器学习、
深度学习
、自然语言处理等技术,测试流程正从“被动验证”向“主动预防”演进。
綦枫Maple
·
2025-03-11 06:08
AI+软件测试
人工智能
自动化
运维
2025年渗透测试
面试题
总结-长某亭科技-安全服务工程师(一面)(题目+回答)
网络安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。目录长某亭科技-安全服务工程师(一面)1.SQL注入原理与代码层面成因原理代码层面成因漏洞触发场景2.XSS漏洞原理(代码层面)原理代码层面成因漏洞触发场景3.OWASPTop10漏洞(2023版)4.SQL注入防御方案5.SQL注入绕过防护6.护网行动工作内容7.学校攻
独行soc
·
2025-03-11 05:04
2025年渗透测试面试指南
面试
职场和发展
安全
红蓝攻防
护网
2025
科技
2025年渗透测试
面试题
总结-快某手-安全实习生(一面、二面)(题目+回答)
网络安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。目录快某手-安全实习生一面一、Linux操作:查看进程PID的5种方法二、Elasticsearch(ES)核心要点三、HTTPS建立过程(TLS1.3优化版)四、Python内存管理机制五、深拷贝与浅拷贝对比六、Python多线程局限性七、XSS防御方案八、SQL注入防
独行soc
·
2025-03-11 05:04
2025年渗透测试面试指南
安全
科技
网络
面试
护网
2015年
使用Activeloop Deep Lake构建
深度学习
数据仓库与向量存储
技术背景介绍随着
深度学习
技术的发展,数据的存储与管理成为了一个重要的问题。尤其是对于需要处理大量数据的应用,例如自然语言处理和图像识别,传统的数据存储方式已经无法满足需求。
dgay_hua
·
2025-03-11 04:49
深度学习
人工智能
python
MySQL精选
面试题
文章目录1.sql优化2.数据库优化3.悲观锁和乐观锁4.共享锁与排他锁5.索引的目的是什么?6.B+Tree对比BTree的优点:6.1磁盘读写代价更低6.2查询速度更稳定且能存更多索引6.3B+树叶子节点两两相连增快区间访问7.聚簇索引和非聚簇索引的区别8.forupdate9.间隙锁GapLocks10.临键锁Next-KeyLocks11.MVCC是什么?1.sql优化对查询进行优化,应尽
米二
·
2025-03-11 02:08
mysql
数据库
oracle
大语言模型原理基础与前沿 挑战与机遇
它们通过
深度学习
技术,特别是基于变换器(Transformer)架构的模型,能够在自然语言处理(NLP)任务中表现出色。大语言模型的出现不仅推动了学术研究的发展,也在实际应用中展现了巨大的潜力。
AI大模型应用之禅
·
2025-03-11 02:07
DeepSeek
R1
&
AI大模型与大数据
计算科学
神经计算
深度学习
神经网络
大数据
人工智能
大型语言模型
AI
AGI
LLM
Java
Python
架构设计
Agent
RPA
DeepSeek源码解析(2)
在大模型(如
深度学习
模型)中,张量扮演着核心角色,具体来说:数据表示:张量用于表示输入数据、模型参数和中间计算结果。
白鹭凡
·
2025-03-11 01:26
deepseek
ai
点云语义分割:PointNet++在S3DIS数据集上的训练
PointNet++是一种流行的
深度学习
方法,可用于处理点云数据,并在各种任务中取得了良好的性能。在本文中,我们将探讨如何使用PointNet++模型在S3DIS数据集上进行训练,并提供相应的源代码。
完美代码
·
2025-03-11 00:25
3d
neo4j
点云
PointNet、PointNet++ 基于
深度学习
的3D点云分类和分割
前言PointNet是直接对点云进行处理的,它对输入点云中的每一个点,学习其对应的空间编码,之后再利用所有点的特征得到一个全局的点云特征。Pointnet提取的全局特征能够很好地完成分类任务,但局部特征提取能力较差,这使得它很难对复杂场景进行分析。PointNet++核心是提出了多层次特征提取结构,有效提取局部特征提取,和全局特征。目录一、PointNet1.1PointNet思路流程1.2Poi
一颗小树x
·
2025-03-11 00:54
人工智能
感知算法
自动驾驶
深度学习
机器学习
3D点云
PointNet
基于YOLOv5的烟雾检测系统:从数据集准备到UI界面实现
近年来,随着
深度学习
技术的发展,目标检测算法被广泛应用于烟雾检测,尤其是基于YOLOv5的目标检测模型,由于其较高的精度和较低的计算开销,已经成为许多实时检测系统的首选模型。
深度学习&目标检测实战项目
·
2025-03-11 00:52
YOLO
ui
分类
数据挖掘
目标跟踪
Android
面试题
之Kotlin Flow的collect和collectLatest有什么区别?
本文首发于公众号“AntDream”,欢迎微信搜索“AntDream”或扫描文章底部二维码关注,和我一起每天进步一点点在Kotlin协程库中,collect和collectLatest是用于收集流数据的两种不同操作。理解它们的区别,将有助于确保在处理流数据时的效率和行为符合预期。1.基本定义collect:是一个挂起函数,用于启动流的收集过程。收集过程会逐个处理每个发射的值,并从上游流向下游执行相
AntDreamer
·
2025-03-10 23:13
kotlin
android
kotlin
开发语言
面试
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他