python金融:从tushare金融数据的获取到运用pandas数据清洗、处理、加工与金融波动率、年化收益率、最大回撤、夏普比率等指标计算与数据可视化
python在处理金融数据时,具有很多优点:一是语法简单,可以轻松上手;二是免费与开源,使用python不像使用matlab需要购买软件授权,节约成本开支;三是具有强大的第三方模块支持,从numpy到pandas、再到人工智能,都有成熟开源模块提供支撑;最后一个是与金融进行了深度的结合,从行情获取到投资策略开发再到风控,都有广泛的应用场景。这篇文章演示了从数据获取到处理的一个简单的、完整的业务流程