E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
Thrift学习系列
Linux git
参考Linux上传文件至GitHubLinux
学习系列
(二十):在Linux系统中使用Git上传代码到GitHub仓库Linux下使用git克隆github项目及文件上传Linux/Ubuntu下使用git
Reicher
·
2024-09-14 01:36
Linux
linux
git
elasticsearch
`计算机知识` 租云服务器, Docker
容器配置云服务器云平台的作用存放docket容器,让运算操作运行在云端获得一个公网IP,让别人可以访问云服务器的分类1,毛坯,即这个服务器是NULL的,然后我们自定义的去配置.比如一些项目框架django,
thrift
supimo
·
2024-09-07 07:12
计算机知识
服务器
运维
docker
thrift
RPC调用性能对比
Gcc4.4.6,开启tcpreuse,tcprecycle;2.测试数据对比如下一、单进程下,长短连接,两个RPC框架和两大语言对比二二.多进程(线程,协程)下,两大RPC框架和两大语言对比总结:1)
Thrift
飞稀饭你的微笑
·
2024-09-04 17:16
机器
学习系列
12:反向传播算法
当我们要运用高级算法进行梯度下降时,需要计算两个值,代价函数和代价函数的偏导数:代价函数我们之前已经知道怎么求了,现在只需要求代价函数的偏导数即可。采用如下方法,先进行前向传播算法,然后再进行反向传播算法(BackpropagationAlgorithm),反向传播算法与前向传播算法方向相反,它用来求代价函数的偏导数。具体过程看下图:用δ作为误差,计算方法为:有时我们在运用反向传播算法时会遇到bu
SuperFengCode
·
2024-09-04 10:40
机器学习系列
机器学习
神经网络
反向传播算法
梯度检验
机器学习笔记
深度
学习系列
(1) TensorFlow---Tensorflow学习路线
学习TensorFlow是掌握深度学习和机器学习的关键一步。以下是一个详细的TensorFlow学习路线图,涵盖从基础到高级的知识点和实践,帮助你逐步掌握TensorFlow并应用于实际问题中。1.基础知识1.1了解TensorFlow概念:什么是TensorFlow?它的用途和应用场景。安装:如何在本地机器上安装TensorFlow,使用pip安装基本库。文档和教程:熟悉TensorFlow的官
CoderIsArt
·
2024-09-04 04:55
Python
机器学习与深度学习
深度学习
tensorflow
学习
Docker
学习系列
(七):使用Kubernetes Operators进行应用的自动化运维管理
使用KubernetesOperators进行应用的自动化运维管理KubernetesOperators是扩展Kubernetes功能的强大工具,可以自动化复杂的应用运维任务。本篇文章将详细介绍KubernetesOperators的概念、工作原理,并通过实际案例演示如何创建和使用Operators进行应用的自动化运维管理。一、什么是KubernetesOperators?KubernetesOp
黄宝良
·
2024-09-03 16:47
Docker
运维
docker
学习
C# WPF入门学习主线篇(十六)—— Grid布局容器
C#WPF入门学习主线篇(十六)——Grid布局容器欢迎来到C#WPF入门
学习系列
的第十六篇。
Ice bear433
·
2024-09-03 01:10
C#
WPF
c#
wpf
学习
从0开始的OpenGL学习(三十六)-Debugging
Debug从0开始的OpenGL
学习系列
目录说到编程,写代码,有一个我们永远绕不过去的话题就是Debug。BUG这种东西真是对它恨之入骨啊,不经意间的一个BUG就可以毁掉你的夜晚,甚至毁掉你的周末。
闪电的蓝熊猫
·
2024-09-02 21:56
基于Python的机器
学习系列
(18):梯度提升分类(Gradient Boosting Classification)
简介梯度提升(GradientBoosting)是一种集成学习方法,通过逐步添加新的预测器来改进模型。在回归问题中,我们使用梯度来最小化残差。在分类问题中,我们可以利用梯度提升来进行二分类或多分类任务。与回归不同,分类问题需要使用如softmax这样的概率模型来处理类别标签。梯度提升分类的工作原理梯度提升分类的基本步骤与回归类似,但在分类任务中,我们使用概率模型来处理预测结果:初始化模型:选择一个
会飞的Anthony
·
2024-09-01 12:50
信息系统
机器学习
人工智能
机器学习
python
分类
HFM深入技术
学习系列
之四--调用API生成日记账
概述本文描述使用HFM提供的SDK自动生成日记账介绍分为三个步骤1获得进入HFM的session2获得JournalOM3使用JournalOM保存日记账用到的包fmcommon.jarfm-web-objectmodel.jarhssutil.jar代码示例获取JournalOMISecurityManagertpMNG=HSSUtilManager.getSecurityManager();S
Flora_Fang
·
2024-08-31 18:00
HFM
HFM
java
API
SDK
HFM深入技术
学习系列
之五--FDMEE钻取EBS
概述本文描述如何设置FDMEE钻取回EBS的方法。注意:FDMEE是通过OpenInterface抽取EBS数据的,不是直接与EBS连接设置过程1进入FDMEE2设置->源适配器->钻取URL3添加钻取URL,录入名称,请求方法等4设置->导入格式5选择要设置的导入格式,详细信息栏目中的钻取URL选项中选择设置好的钻取URL钻取EBS的URLURL格式http://myserver.com:801
Flora_Fang
·
2024-08-31 18:00
HFM
FDMEE
EBS钻取
HFM深入技术
学习系列
之二--规则
学习的路线学习如何写规则,从技术的角度看,从以下几点入手:0HFM合并报表的基本业务功能1规则的入口,即HFM是从哪里调用我们写的规则。2规则的基本语法,规则是用VBSCRIPT写的,这里所说的基本语法不是指的VBSCRIPT的语法,其实更多地是说规则里HS这个OBJECT和相关函数如何使用。3规则的深入应用HFM合并报表的基本业务功能HFM是一个专业性很强的软件,技术人员如果对其涉及到的财务-合
Flora_Fang
·
2024-08-31 18:30
HFM
HFM
python利用pyhive 连接hive
1.下载需求包pipinstallsaslpipinstall
thrift
pipinstall
thrift
-saslpipinstallPyHive2.连接hive注意端口默认为10000frompyhiveimporthiveconn
Leonban
·
2024-08-31 16:50
《Python基础知识》
python
hive
大数据
python连接hive--Pyhive
Pyhive安装包pipinstallsaslpipinstall
thrift
pipinstall
thrift
-saslpipinstallPyHive#安装对应的包sasl可能会报错#下载sasl文件
Elvis_hui
·
2024-08-31 16:20
hive
hive
python
sql
基于Python的机器
学习系列
(17):梯度提升回归(Gradient Boosting Regression)
简介梯度提升(GradientBoosting)是一种强大的集成学习方法,类似于AdaBoost,但与其不同的是,梯度提升通过在每一步添加新的预测器来减少前一步预测器的残差。这种方法通过逐步改进模型,能够有效提高预测准确性。梯度提升回归的工作原理在梯度提升回归中,我们逐步添加预测器来修正模型的残差。以下是梯度提升的基本步骤:初始化模型:选择一个初始预测器h0(x),计算该预测器的预测值。计算残差:
会飞的Anthony
·
2024-08-31 09:02
人工智能
信息系统
机器学习
机器学习
python
回归
基于Python的机器
学习系列
(16):扩展 - AdaBoost
简介在本篇中,我们将扩展之前的AdaBoost算法实现,深入探索其细节并进行一些修改。我们将重点修复代码中的潜在问题,并对AdaBoost的实现进行一些调整,以提高其准确性和可用性。1.修复Alpha计算中的问题在AdaBoost中,如果分类器的错误率e为0,则计算出的权重α将是未定义的。为了解决这个问题,我们可以在计算过程中向分母中添加一个非常小的值,以避免除零错误。2.调整学习率sklearn
会飞的Anthony
·
2024-08-31 09:00
信息系统
机器学习
人工智能
python
机器学习
开发语言
深度
学习系列
70:模型部署torchserve
1.流程说明ts文件夹下,从launcher.py进入,执行jar文件。入口为model_server.py的start()函数。内容包含:读取args,创建pid文件找到java,启动model-server.jar程序,同时读取log-config文件,TEMP文件夹地址,TS_CONFIG_FILE文件根据cpu核数、gpu个数,启动多进程。每个进程有一个socket_name和socket
IE06
·
2024-08-31 00:25
深度学习系列
深度学习
人工智能
Spark-第六周
sparksql运行流程【Spark精讲】一文讲透SparkSQL执行过程_sparksql执行过程-CSDN博客摸鱼大数据——SparkSQL——SparkSQL的运行机制-CSDN博客2.熟练使用
thrift
server
fightingD&W
·
2024-08-27 12:13
Spark
spark
大数据
分布式
MySQL 系统
学习系列
- SQL 语句 DQL 语句的使用(2)《MySQL系列篇-04》
SQL语句DQL聚合函数1.聚合聚合查询:指的是一个函数[聚合函数对一组执行计算并返回单一的值]聚合的目的:为了快速得到统计数据聚合函数说明count(*)表示计总行数,括号中写*与列名,结果相同max(列)表示求此列最大值min(列)表示求此列最小值sum(列)求此列的和avg(列)求此列的平均值group_concat(列)按组进行来接数据▲【分组查询】#count函数-通常配合组合一起使用#
小孔_H
·
2024-08-25 17:31
MySQL
mysql
学习
sql
MySQL 系统
学习系列
- SQL 语句 DQL 语句的使用(1)《MySQL系列篇-03》
SQL语句DQL数据库表常见查询语句1.全部查询#查询全部[SELECT*FROM表名]SELECT*FROMstu;#查询stu表中的所有列#再SELECT语句后加上distinct语句,表示去重查询SELECTdistinct`name`FROMstu;#查询stu表中的所有name列(去重)2.条件查询#条件查询[SELECT*FROM表名FROMWHERE条件]#比较运算符SELECT*F
小孔_H
·
2024-08-25 17:01
MySQL
mysql
学习
sql
MySQL 系统
学习系列
- SQL 语句 DML 语句的使用《MySQL系列篇-02》
SQL语句DML数据库DML操作0.MySQL中大小写问题[tip]:1.数据库名与表名是严格区分大小写的(window不区分)2.表的别名是严格区分大小写的(如stuass)(window不区分)3.列名忽略大小写4.变量名也是严格区分大小写1.插入数据其中分别可以使用全列插入、缺省插入与批量插入三种方式#全列插入:INSERTINTO表名VALUES(v1,v2,v3,...)INSERTIN
小孔_H
·
2024-08-25 16:28
MySQL
mysql
学习
sql
从零开始基于go-
thrift
创建一个RPC服务
Thrift
是一种被广泛使用的rpc框架,可以比较灵活的定义数据结构和函数输入输出参数,并且可以跨语言调用。
weixin_30371875
·
2024-08-23 05:47
golang
php
json
Linux
学习系列
之vim编辑器(一)
vi编辑器的操作模式输入模式—aio等—>命令模式<—:键—末行模式从输入/末行模式切换到命令模式都是需要按ESC键注:a光标后输入,i光标前输入,o直接向下加一行输入,O向上加一行输入在vi编辑器中光标的移动(命令行模式下)键组合(命令)光标的移动$光标移动到当前行的结尾0(零)光标移动到当前行的开始GG光标移动到最后一行gg光标移动到第一行在命令行模式下删除与复制的操作键组合(命令)含义dd删
llibertyll
·
2024-03-28 23:29
linux
学习
大规模时序数据存储(三)| 核心功能设计
作者简介运小尧百度高级研发工程师一、简介基本功能方面,我们的TSDB在数据的收集上提供了HTTP、
Thrift
等API;对查询,除了提供API之外还提供了命令行工具(CLITool),这些基本功能的设计在不同的
AIOPstack
·
2024-03-14 18:44
线性回归(1)
MachineLearninginMarketing感谢李宏毅《回归-案例研究》部分内容为听取李宏毅老师讲座的笔记,也融入了自己对机器学习理解,个人推荐李宏毅老师的机器
学习系列
课程,尤其对于初学者强烈推荐
zidea
·
2024-03-06 05:24
Jmeter
学习系列
之七:并发线程组Concurrency Thread Group详解
一、ConcurrencyThreadGroup的介绍ConcurrencyThreadGroup提供了用于配置多个线程计划的简化方法该线程组目的是为了保持并发水平,意味着如果并发线程不够,则在运行线程中启动额外的线程和StandardThreadGroup不同,它不会预先创建所有线程,因此不会使用额外的内存对于上篇讲到的SteppingThreadGroup来说,ConcurrencyThrea
艳Yansky
·
2024-02-29 17:57
自动化测试
Jmeter
压力测试
jmeter
学习
Python
学习系列
-认识面向对象三大特性、可见性和属性装饰器
系列文章目录第一章初始Python第二章认识Python变量、类型、运算符第三章认识条件分支、循环结构第四章认识Python的五种数据结构第五章认识Python函数、模块第六章认识面向对象三大特性文章目录系列文章目录前言一、类和对象1.定义类2.创建和使用类对象3.使用类对象中的方法4.初始化二、面向对象的三大特性1.封装2.继承3.多态三、属性可见性四、属性装饰器总结前言面向对象编程是一种非常流
需要休息的KK.
·
2024-02-29 15:25
python
学习
java
pycharm
面试
Flutter框架性泛
学习系列
之二、Flutter应用层(Application Layer)上-常用Widgets与简单动画
文章目录概述一、应用程序(Application):1、创建应用对象2、定义应用主页二、Widgets:1.基础的内置Widgets应用1.1TextWidget1.2RaisedButtonWidget1.3ImageWidget1.4IconWidget2.自定义Widgets的创建与应用2.1创建按钮组件2.2创建卡片组件2.3创建自定义列表项3.布局Widgets的应用3.1RowWidg
太书红叶
·
2024-02-26 03:12
Flutter框架性学习
flutter
学习
Dart
widget树
Rust可以解决的常见问题
rust处理缓冲区溢出问题3.数据竞争(DataRaces)4.空指针(NullPointers)5.内存泄漏(MemoryLeaks)6.并发安全(ConcurrencySafety)总结前言Rust
学习系列
TE-茶叶蛋
·
2024-02-20 19:37
Rust
rust
开发语言
后端
spark CTAS nuion all (union all的个数很多)导致超过spark.driver.maxResultSize配置(2G)
背景该sql运行在spark版本3.1.2下的
thrift
server下现象在运行包含多个union的sparksql的时候报错(该sql包含了50多个uinon,且每个union字查询中会包含join
鸿乃江边鸟
·
2024-02-20 13:29
Linux
学习系列
(二十):在Linux系统中使用Git上传代码到GitHub仓库
这里写目录标题引言一、Git的基本原理二、如何在Linux中连接Github代码仓库1.安装git2.设置用户名和邮箱3.创建Github本地仓库4.通过ssh密钥连接GitHub仓库三、Git的基本使用1.创建本地仓库2.拉取远程仓库代码3.修改远程仓库的代码4.向远程仓库提交代码四、Git常用命令引言在工作中用git命令提交代码办公是非常常用的,所以掌握git的基本原理以及使用方法是非常的重要
lijiachang030718
·
2024-02-20 04:09
Linux
linux
学习
github
微服务(四)
让我们想象一下你正在写一些代码通过RESTAPI或
Thrift
API调用一个服务。为了发起一个请求,你的代码需要知道这个服务实例的网络地址(IP地址和端口号)。运行在物理机上的传统应用,服务实例的
Jiandong
·
2024-02-19 18:12
Rust-知多少?
总结前言Rust
学习系列
,记录一些rust使用小技巧1.使用下划线开头忽略未使用的变量如果你创建了一个变量却不在任何地方使用它,Rust通常会给你一个警告。
TE-茶叶蛋
·
2024-02-19 16:44
Rust
rust
开发语言
后端
Rust 原生类型
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、标量类型(scalartype)二、复合类型(compoundtype)总结前言Rust
学习系列
,rust中的原生类型一、
TE-茶叶蛋
·
2024-02-19 16:13
Rust
rust
开发语言
后端
Rust-所有权(ownership)
文章目录前言一、管理计算机内存的方式所有权规则二、Rust中的moveCopytrait三、Rust中的clone总结前言Rust入门
学习系列
-Rust的核心功能(之一)是所有权(ownership)。
TE-茶叶蛋
·
2024-02-19 16:10
Rust
rust
开发语言
后端
Kotlin
学习系列
(二)Kotlin语法基础
本系列内容均来自《Kotlin从小白到大牛》一书,感谢作者关东升老师。标识符和关键字1标识符标识符就是变量、常量、函数、属性、类、接口和扩展等由程序员指定的名字。构成标识符的字符均有一定的规范,Kotlin语言中标识符的命名规则如下:区分大小写:Myname与myname是两个不同的标识符。首字符,可以是下划线(_)或字母,但不能是数字。除首字符外其他字符,可以是下划线(_)、字母和数字。硬关键字
Fakecoder_Sunis
·
2024-02-15 08:11
Java原生序列化和Kryo序列化性能比较
1.背景最近几年,各种新的高效序列化方式层出不穷,不断刷新序列化性能的上限,最典型的包括:专门针对Java语言的:Kryo,FST等等跨语言的:Protostuff,ProtoBuf,
Thrift
,Avro
编码前线
·
2024-02-14 20:47
接口自动化测试,完整入门篇
其中接口协议分为HTTP,WebService,Dubbo,
Thrift
,Socket等类型,测试类型又主要分为功能测试,性能测试,稳定性测试,安全性测试等。在
.咖啡加剁椒
·
2024-02-13 13:19
软件测试
功能测试
软件测试
自动化测试
程序人生
职场和发展
Zookeeper
学习系列
【二】Zookeeper 集群章节之集群搭建
前言同道们,好久不见,上一章中,我主要讲了Zookeeper的一些基础的知识点。数据模型+原语集+Watches机制。本章内容主要讲的是集群搭建相关的知识。本篇的内容主要包含以下几点:Zookeeper运行模式Zookeeper搭建一、Zookeeper运行模式Zookeeper有两种运行模式,单点模式和集群模式。单点模式(standalonemode)-Zookeeper只运行在单个服务器上,常
Richard_易
·
2024-02-13 04:20
MySQL
学习系列
之四——数据过滤和过滤数据
在上一篇内容中我们介绍了简单的select查询、查询结果返回固定条数以及对查询结果进行排序。这一篇内容会介绍简单的数据过滤,主要包括where子句操作符、AND、OR、IN、NOT操作符。实际应用中,数据过滤分两种,可以在应用层通过代码过滤,在数据库中取出所有的值,然后通过代码循环判断,取出符合条件的值,但是这种方法效率非常低,会传给应用多余数据,浪费网络带宽,一般只有写不出对应的数据库脚本时,才
小詹小詹
·
2024-02-12 17:20
Spark 使用之操作Hudi表
Hudi表还可以通过Spark
Thrift
Server操作,参见通过Spark
thrift
server操作Hudi表。
AlienPaul
·
2024-02-11 14:52
机器
学习系列
(8)——提升树与GBDT算法
本文介绍提升树模型与GBDT算法。0x01、提升树模型提升树是以分类树或回归树为基本分类器的提升方法。提升树被认为是统计学习中性能最好的方法之一。提升方法实际采用加法模型(即基函数的线性组合)与前向分步算法,以决策树为基函数的提升方法称为提升树(boostingtree)。对分类问题决策树是二叉分类树,对回归问题决策树是二叉回归树。提升树模型可以表示为决策树的加法模型:其中,表示决策树,为决策树的
陌简宁
·
2024-02-11 14:40
机器学习
Java并发包源码
学习系列
:阻塞队列实现之LinkedBlockingDeque源码解析
文章目录LinkedBlockingDeque概述类图结构及重要字段linkFirstlinkLastunlinkFirstunlinkLastunlink总结参考阅读系列传送门:Java并发包源码
学习系列
天乔巴夏丶
·
2024-02-11 14:37
Java并发编程
rpc协议中,字段值类型改变的思考
背景今天遇到了一个场景,下游强行把某个字段的类型给改了(字段顺序没有变),上线的过程中上下游都没有出错,和我预想的不一样,我认为上游反序列化解析的时候会出错python语言,
thrift
协议当然这样的做法不推荐
赤子心_d709
·
2024-02-11 12:15
c# 访问hbase_【C#】透过
Thrift
操作HBase系列
题外话:C#调用Java的几种方法1.将Java端的接口通过WebService方式发布,C#可以方便的调用2.先使用C++通过JNI调用Java,C#调用C++的接口3.使用开源的库直接使用C#调用Java,详细信息请点击4.使用IKVM实现C#调用Java,参考:http://www.ikvm.net/之所以说这些,是因为自己这边客户端要调用HBase接口(Java实现),刚开始我是使用WS方
weixin_39946500
·
2024-02-11 08:18
c#
访问hbase
机器
学习系列
——(十三)多项式回归
引言在机器学习领域,线性回归是一种常见且简单的模型。然而,在某些情况下,变量之间的关系并不是线性的,这时候我们就需要使用多项式回归来建模非线性关系。多项式回归通过引入高次项来扩展线性回归模型,从而更好地拟合数据。本文将详细介绍多项式回归的原理、应用场景和实现步骤,并通过一个实际案例演示如何使用多项式回归进行预测。一、原理多项式回归是一种形式上为多项式的函数与自变量之间的线性回归关系。其基本原理是通
飞影铠甲
·
2024-02-10 21:06
机器学习
机器学习
回归
人工智能
机器
学习系列
——(二十二)结语
随着我们的机器
学习系列
的探索画上句号,我们不禁感慨于这一领域的广阔和深邃。从最初的基础概念到复杂的算法,从理论的探讨到实际应用的示例,我们一起经历了一段非凡的旅程。
飞影铠甲
·
2024-02-10 11:53
机器学习
机器学习
人工智能
机器
学习系列
——(二十一)神经网络
引言在当今数字化时代,机器学习技术正日益成为各行各业的核心。而在机器学习领域中,神经网络是一种备受瞩目的模型,因其出色的性能和广泛的应用而备受关注。本文将深入介绍神经网络,探讨其原理、结构以及应用。一、简介神经网络是一种受到人类神经系统启发而设计的计算模型。它由大量的人工神经元组成,这些神经元之间通过连接进行信息传递和处理。神经网络的主要目标是从数据中学习规律,并能够进行预测、分类、识别等任务。二
飞影铠甲
·
2024-02-10 11:23
机器学习
机器学习
神经网络
人工智能
机器
学习系列
——(二十)密度聚类
引言在机器学习的无监督学习领域,聚类算法是一种关键的技术,用于发现数据集中的内在结构和模式。与传统的基于距离的聚类方法(如K-Means)不同,密度聚类关注于数据分布的密度,旨在识别被低密度区域分隔的高密度区域。这种方法在处理具有复杂形状和大小的聚类时表现出色,尤其擅长于识别噪声和异常值。本文将详细介绍密度聚类的概念、主要算法及其应用。一、概述密度聚类基于一个核心思想:聚类可以通过连接密度相似的点
飞影铠甲
·
2024-02-10 11:53
机器学习
机器学习
聚类
支持向量机
机器
学习系列
——(十九)层次聚类
引言在机器学习和数据挖掘领域,聚类算法是一种重要的无监督学习方法,它试图将数据集中的样本分组,使得同一组内的样本相似度高,不同组间的样本相似度低。层次聚类(HierarchicalClustering)是聚类算法中的一种,以其独特的层次分解方式,在各种应用场景中得到广泛应用,如生物信息学、图像分析、社交网络分析等。一、概述层次聚类算法主要分为两大类:凝聚的层次聚类(AgglomerativeHie
飞影铠甲
·
2024-02-10 07:47
机器学习
机器学习
聚类
人工智能
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他