- 传统推荐算法库使用--mahout初体验
Huterox
推荐算法算法机器学习
文章目录前言环境准备调用混合总结前言郑重声明:本博文做法仅限毕设糊弄老师使用,不建议生产环境使用!!!老项目缝缝补补又是三年,本来是打算直接重写写个社区然后给毕设使用的。但是怎么说呢,毕竟毕设的主角不是xx社区,这个社区是为我的编译器服务的,为了推广这个编译器,然后我才做了这个社区。然而不幸的是,开题答辩的时候,各位“专家”叫我以xx社区为主,听起来高级。于是没有办法,我只能强行做个社区,怎么做呢
- 基于音乐/电影/图书的协同过滤推荐算法代码实现
74b3a3e489d4
基于音乐/电影/图书的协同过滤推荐算法代码实现一、开发工具及使用技术MyEclipse10、jdk1.7、tomcat7、jsp、javascript、jquery、bootstrap、webuploader、layer、ssh、mysql、navicat、mahoutAPI等。二、开发过程1、本文主要介绍基于音乐的协同过滤推荐算法代码实现,电影、图书等推荐原理相同。2、本文使用的推荐算法有:基于
- Hadoop 大数据技术原理与应用
kk8_
hadoop大数据hdfs
Hadoop大数据技术原理与应用大数据概述定义特征大量,多样,高速,价值研究意义应用场景医疗,金融,零售Hadoop概述历史优势扩容能力强,成本低,高效率,可靠性,高容错Hadoop生态分布式存储系统(HDFS)分布式计算框架(MapReduce)资源管理(YARN)数据迁移(Sqoop)数据挖掘算法库(Mahout)分布式数据库(HBase)分布式协调服务(Zookeeper)数据仓库(Hive
- 【大数据分析与挖掘技术】概述
Francek Chen
大数据技术基础数据分析数据挖掘Mahout
目录一、数据挖掘简介(一)数据挖掘对象(二)数据挖掘流程(三)数据挖掘的分析方法(四)经典算法二、Mahout(一)Mahout简介(二)主要特性(三)Mahout安装与配置一、数据挖掘简介需要是发明之母。近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。获取的信息和知识可以广泛用于各种应用,包括商务管理,生产控制,市
- 【大数据分析与挖掘技术】Mahout推荐算法
Francek Chen
大数据技术基础数据分析人工智能数据挖掘Mahout
目录一、推荐的定义与评估(一)推荐的定义(二)推荐的评估二、Mahout中的常见推荐算法(一)基于用户的推荐算法(二)基于物品的推荐算法(三)基于SVD的推荐算法(四)基于线性插值的推荐算法(五)基于聚类的推荐算法三、对GroupLens数据集进行推荐与评价(一)如何使用推荐器进行推荐(二)如何评估推荐器的好坏推荐是Mahout机器学习算法的主题之一,它极大地渗透到了人们日常生活的方方面面,比如,
- 计算机毕业设计之全网独家Spark租房爬虫数据分析与推荐系统 租房大数据 租房app 租房数据分析 租房爬虫 房源推荐系统 房源数据分析 房源可视化
haochengxu2022
数据分析爬虫推荐系统spark爬虫数据分析推荐系统
一、网站·登录与注册、注销·短信验证码修改密码·我的信息:身份证实名认证·租房业务流程(预约+看房+支付+完成+评价)、进度步骤条展示·支付宝沙箱支付·房屋浏览、中介信息查看·房屋推荐(基于mahout协同过滤算法)·房屋评价、点赞与收藏二、后端·统计主页、个人信息(带头像上传)、权限管理、用户管理、资讯管理、通知管理、日志管理、评论管理、轮播图管理、房屋管理、中介管理、订单管理。·中介权限可以登
- 推荐系统中协同过滤算法实现分析
weixin_33853794
人工智能python数据库
2019独角兽企业重金招聘Python工程师标准>>>原创博客,欢迎转载,转载请注明:http://my.oschina.net/BreathL/blog/62519最近研究Mahout比较多,特别是里面协同过滤算法;于是把协同过滤算法的这个实现思路与数据流程,总结了一下,以便以后对系统做优化时,有个清晰的思路,这样才能知道该如何优化且优化后数据亦能正确。推荐中的协同过滤算法简单说明下:首先,通过
- 大数据分析- 基于Hadoop/Mahout的大数据挖掘
shenmanli
大数据hadoop数据挖掘行业应用开发人员
随着互联网、移动互联网和物联网的发展,我们已经切实地迎来了一个大数据的时代。大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的需求。目前对大数据的分析工具,首选的是Hadoop平台。Hadoop在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台。一、培训对象1,系统架构师、系
- “大数据分析挖掘-基于Hadoop/Mahout/Mllib的大数据挖掘(含Spark、Storm和Docker应用介绍)”培训
shenmanli
培训课程公开课企业培训大数据hadoopspark
随着互联网、移动互联网和物联网的发展,我们已经切实地迎来了一个大数据的时代。大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的需求。目前对大数据的分析工具,首选的是Hadoop/Yarn平台。Hadoop/Yarn在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台。为解决广大
- springboot集成mahout实现简单基于协同过滤算法的文章推荐算法
程序个人练习生
开源项目学习算法springboot推荐算法
文章目录参考文章前言1.建表并且生成一些数据首先,建立一个用户文章操作表(user_article_operation)使用casewhen语句简单统计数据2.代码与测试只需要根据表生成相应实体类(注意要加一个value属性来存储分数)主要代码如下,其实就两个方法userArticleOperationMapper.getAllUserPreference()方法收集数据mapper文件如下测试算
- java电影推荐系统_基于Mahout的电影推荐系统
语文乌托邦
java电影推荐系统
1.Mahout简介ApacheMahout是ApacheSoftwareFoundation(ASF)旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。经典算法包括聚类、分类、协同过滤、进化编程等等,并且,在Mahout的最近版本中还加入了对ApacheHadoop的支持,使这些算法可以更高效的运行在云计算环境中。2.Taste简介T
- mahout 源码解析之聚类--聚类迭代模型
theonlytank2011
数据挖掘mahout源码mahout源码解析
在前面讲聚类策略时,包org.apache.mahout.clustering.iterator里面还有几个类没有进行讲解,这次做下收尾工作。ClusterIterator利用ClusterClassifier和指定的迭代次数将样本进行聚类。其中有三个具体的函数。iterate主要对内存中的数据进行聚类,输入就为一个Vector类型的迭代器。publicClusterClassifieritera
- 理论学习--【Hadoop生态原理学习】
zenas_yuan
Hadoophadoop
一、Hadoop原理1.核心:HDFS(存储)、MapReduce(分析)解决大量数据存储与处理的问题离线分析:hive实现查询:hbaseBI分析:Mahout2.版本1.0mapreduce还进行资源调度2.0mapreduce=yarn(资源调度)+mapreduce(进行计算运行在yarn上),HDfs:nn,ha2.1.2yarn还支持strom、spark、。。选择考虑因素:是否开源、
- 推荐系统-基于物品协同过滤算法代码实现
Moutai码农
大数据推荐系统算法推荐算法大数据spark
1、简介当前Spark没有像mahout那样,严格区分基于物品的协同过滤推荐(ItemCF)和基于用户的协同过滤推荐(UserCF),只有基于模型的协同过滤推荐算法ALS(model-basedCF)。但ALS算法对于一些特定的问题(用户数量较小的场景,以及物品数量明显小于用户数量的场景),效果并不理想,不像mahout提供了各种推荐算法选择。为了充分利用spark在速度上带来的提升同时为满足一些
- java+jsp+mysql实现在线电影推荐系统movieCFWeb mahout实现基于用户的协同过滤推荐算法 基于项目的协同过滤推荐算法
74b3a3e489d4
java+jsp+mysql实现在线电影推荐系统movieCFWeb一、项目简介http://localhost:8080/movieCFWeb/前台http://localhost:8080/movieCFWeb/admin后台自定义数据,mahout实现基于用户的协同过滤推荐算法前台包含用户注册、登录、搜索电影、分页、电影详情、评分、修改信息、评分列表、推荐电影等功能后台包括用户、电影、评分、
- 2.3 初探Hadoop世界
howard2005
数据清洗和预处理大数据离线分析hadoop大数据分布式
文章目录零、学习目标一、导入新课二、新课讲解(一)Hadoop的前世今生1、Google处理大数据三大技术2、Hadoop如何诞生3、Hadoop主要发展历程(二)Hadoop的优势1、扩容能力强2、成本低3、高效率4、可靠性5、高容错性(三)Hadoop的生态体系1、HDFS分布式文件系统2、MapReduce分布式计算框架3、Yarn资源管理框架4、Sqoop数据迁移工具5、Mahout数据挖
- 「大数据集群的搭建和使用」背景知识:大数据Hadoop生态圈介绍
优秀的Athena在休息
大数据集群的搭建和使用大数据hadoop分布式
目录一、Hadoop简介二、Hadoop的运行模式1.单机模式2.伪分布式模式3.完全分布式模式三、Hadoop生态圈组件1.HDFS2.MapReduce3.YARN4.Hive5.Pig6.HBase7.HCatalog8.Avro9.Thrift10.Drill11.Mahout12.Sqoop13.Flume14.Ambari15.Zookeeper四、Hadoop优缺点五、Hadoop学
- 【大数据】Hadoop 生态系统及其组件
G皮T
#Hadoophadoopbigdata大数据hdfshivemapreduceyarn
Hadoop生态系统及其组件1.Hadoop生态系统的组成2.Hadoop生态系统简介2.1HDFS2.2MapReduce2.3YARN2.4Hive2.5Pig2.6HBase2.7HCatalog2.8Avro2.9Thrift2.10Drill2.11Mahout2.12Sqoop2.13Flume2.14Ambari2.15Zookeeper2.16Oozie1.Hadoop生态系统的组
- 26Hbase介绍及其数据模型和架构(hbase学习1)
文茶君
Hbase介绍Hadoop生态系统spark已经替代mahouthbase简介:非关系型数据库知识面扩展cassandra、hbase、mongodb(文档型数据库)、rediscouchdb,文件存储数据库Neo4j非关系型图数据库HbaseHadoopDatabase,是一个高可靠性、高性能、面向列(面向列的KV数据库)、可伸缩(动态扩展机器。不需要停服务)、实时读写的分布式数据库利用Hado
- Item-Based Recommendations with Hadoop
liuyuan185442111
OldHadoophadoop大数据分布式
Mahout在MapReduce上实现了Item-BasedCollaborativeFiltering,这里我尝试运行一下。安装Hadoop从下载Mahout并解压准备数据下载1MillionMovieLensDataset,解压得到ratings.dat,用sed‘s/:[0-9]{1,}):[0-9]{1})::[0-9]{1,}$/,\1,\2/’ratings.dat处理成需要的格式。运
- 【大数据毕设】基于Hadoop的音乐推荐系统论文(三)
Maynor996
#课设&毕设大数据课程设计hadoop
博主介绍:✌全网粉丝6W+,csdn特邀作者、博客专家、大数据领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于大数据技术领域和毕业项目实战✌文末获取项目联系摘要本文基于Hadoop技术,设计并实现了一个名为“酷酷音乐网站”的系统,用于音乐资源的存储、管理和推荐。该系统采用Hadoop生态系统中的组件,包括HDFS、MapReduce、HBase和Mahout等,实现
- 如何使用Java进行机器学习?
玥沐春风
java机器学习开发语言
在Java中进行机器学习,可以使用各种开源机器学习库和框架来实现。以下是一些常用的Java机器学习库:Weka:Weka是一个非常流行的机器学习库,提供了大量的算法和工具,以及用于数据预处理、特征选择和可视化的功能。Deeplearning4j:Deeplearning4j是一个用于深度学习的开源库,支持多种神经网络模型和训练算法,可以用于图像分类、文本分析等任务。ApacheMahout:Apa
- 阿里云上部署java8和hadoop3.0、spark、hive及Mahout
karwik
大数据
1.安装JDK1.8到oracle官网:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.htmllinux是64位的,安装jdk-8u131-linux-x64.tar.gz安装及配置参考http://blog.csdn.net/rchm8519/article/details/48721
- 【大数据】图解 Hadoop 生态系统及其组件
G皮T
#Hadoop大数据hadoop分布式hdfsmapreduceyarnhive
图解Hadoop生态系统及其组件1.HDFS2.MapReduce3.YARN4.Hive5.Pig6.Mahout7.HBase8.Zookeeper9.Sqoop10.Flume11.Oozie12.Ambari13.Spark在了解Hadoop生态系统及其组件之前,我们首先了解一下Hadoop的三大组件,即HDFS、MapReduce、YARN,它们共同构成了Hadoop分布式计算框架的核心
- 斯皮尔曼相关性 —— Spearman Correlation
ifnoelse
推荐算法usercacheaction存储
斯皮尔曼相关性可以理解为是排列后(Rank)用户喜好值之间的Pearson相关度。《MahoutinAction》中有这样的解释:假设对于每个用户,我们找到他最不喜欢的物品,重写他的评分值为“1”;然后找到下一个最不喜欢的物品,重写评分值为“2”,以此类推。然后我们对这些转换后的值求Pearson相关系数,这就是Spearman相关系数。斯皮尔曼相关度的计算舍弃了一些重要信息,即真实的评分值。但它
- java+jsp+mysql实现个性化租车推荐系统carcfrs mahout实现基于用户、项目的协同过滤推荐算法 SSH(spring+struts+hibernate)开发框架
74b3a3e489d4
java+jsp+mysql实现个性化租车推荐系统carcfrs一、项目简介只有前台用户,没有管理员,功能是用户登录、注册、评论、评分、收藏、热点推荐、基于用户根据评分进行协同过滤推荐算法,数据爬虫爬取一嗨租车数据。二、项目展示
- Mahout教程_编程入门自学教程_菜鸟教程-免费教程分享
菜鸟一记
笔记
教程简介Mahout是ApacheSoftwareFoundation(ASF)旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。Mahout包含许多实现,包括聚类、分类、推荐过滤、频繁子项挖掘。此外,通过使用ApacheHadoop库,Mahout可以有效地扩展到云中。Mahout教程-使用此入门教程,从简介,机器學習,环境,推荐,聚
- SSH(Spring+Hibernate+Struts)开发框架开发购物商城推荐系统shop mahout实现基于用户、项目的协同过滤推荐算法 个性化购物推荐系统
74b3a3e489d4
SSH(Spring+Hibernate+Struts)开发框架开发购物商城推荐系统shop项目简介1、前台:http://localhost:8080/ComputerRecom/后台:http://localhost:8080/ComputerRecom/admin/login.jsp用户名:admin密码:admin;2、推荐使用mahout接口实现基于用户、项目的协同过滤推荐算法,ssh开
- 大数据学习记录(hadoop hive flume azkaban sqoop)
左上晨
大数据hadoophiveflumeazkaban
大数据学习记录(hadoophiveflumeazkabansqoop)1.hadoop对海量数据进行分布式处理2.核心组件:HDFS(分布式文件系统)、YARN(运算资源调度系统)、MAPREDUCE(分布式运算编程框架)3.HIVE:基于大数据技术(文件系统+运算框架)的SQL数据仓库工具4.HBASE:基于HADOOP的分布式海量数据库5.Mahout:基于mapreduce/spark/f
- 构建智能电商推荐系统:大数据实战中的Kudu、Flink和Mahout应用【上进小菜猪大数据】
上进小菜猪
大数据专栏合集大数据flink人工智能
上进小菜猪,沈工大软件工程专业,爱好敲代码,持续输出干货。本文将介绍如何利用Kudu、Flink和Mahout这三种技术构建一个强大的大数据分析平台。我们将详细讨论这些技术的特点和优势,并提供代码示例,帮助读者了解如何在实际项目中应用它们。通过本文的指导,读者将能够掌握如何使用这些工具来处理大规模数据集,并进行智能分析。在当今的信息时代,大数据分析成为了各行各业中不可或缺的一环。为了有效地处理海量
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号