10. 设 $A,B$ 是同阶半正定矩阵, $0\leq s\leq 1$. 证明: $$\bex \sen{A^sB^s}_\infty \leq \sen{AB}_\infty^s. \eex$$
证明:
(1). 先证明: $A$ 的谱范数就是 $A$ 的最大奇异值. 事实上, $$\beex \bea \sen{A}_\infty^2 &=\max_{\sen{x}_2=1}\sen{Ax}_2^2\\ &=\max_{\sen{x}_2=1}x^*A^*Ax\\ &=\max_{\sen{x}_2=1}x^*VV^*A^*U^*UAVV^*x\\ &=\max_{\sen{y}_2=1}y^*\diag(s_1^2,\cdots,s_p^2)y\quad\sex{y=V^*x}\\ &=\max_{\sen{y}_2=1}\sum_{i=1}^p s_i^2|y_i|^2\\ &=s_1^2. \eea \eeex$$
(2). 往证题目. $$\beex \bea \sen{A^sB^s}_\infty^2 &=\lm_1(B^sA^sA^sB^s)\\ &=\lm_1(A^{2s}B^{2s})\\ &\leq \sez{\lm_1(A^2B^2)}^s\quad\sex{\mbox{定理 3.25}}\\ &=\sez{\lm_1(BAAB)}^s\\ &=[\sen{AB}_\infty^2]^s. \eea \eeex$$