- Dify知识库构建流程及示例
cqbelt
ai笔记AI应用
总体流程1.数据预处理清洗:去除噪声、特殊字符、标准化格式。分词/标记化:拆分文本为单词或子词单元(如使用Tokenizer)。元数据关联:附加来源、时间戳等信息,支持多维度检索。2.文本分块固定长度分块:按字符或Token数切分,简单高效。语义分块:基于句子边界或主题分割(如NLP模型识别段落主旨)。重叠策略:相邻块间部分重叠,避免上下文断裂。3.向量化(Embedding)嵌入模型:调用预训练
- 如何计算一个7B的模型训练需要的参数量以及训练时需要的计算资源
yxx122345
算法
计算理论过程见:transformer中多头注意力机制的参数量是多少?1.模型参数量的计算7B参数模型的总参数量是70亿(7billion)。这些参数主要分布在以下几个部分:Transformer层:多头注意力机制(Multi-HeadAttention)前馈神经网络(Feed-ForwardNetwork)嵌入层(EmbeddingLayer):词嵌入(TokenEmbeddings)位置编码(
- EDAS:投稿经验-word版本-问题解决
weixin_41724971
学习总结Latex写作经验总结SCI科研写作方法总结word
1.字体不对,字体未嵌入问题问题:word转PDF后,总是显示有字体格式不对(忘记截图了)。办法:1.EDAS投稿PDF格式问题-CSDN博客-PDF上修改+IEEE论文检测的字体未嵌入问题TimesNewRoman,Bold,TimesNewRoman,Italicisnotembedded解决方法_打开其他人的word显示文字未嵌入-CSDN博客(必须有会员,说实话我没弄出来。如有需要这俩结合
- 【ComfyUI专栏】ComfyUI引用Embedded和HyperNetwork超网络
雾岛心情
ComfyUIComfyUIAIGC
大家如果使用过WebUI,那么一定知道界面中存在的Embedding和HyperNetworks。在界面中我们直接点击相应的嵌入式和超网络就能直接使用。ComfyUI的界面设计不如WEBUI直观,但我们仍可通过Text-Encoder输入Embedding来实现Embedding的引入。在C站(Civitai)上,我们可以看到种类繁多的Embedding资源。这些文件通常体积较小,大多只有几十KB
- RAG数据嵌入和重排序:如何选择合适的模型
从零开始学习人工智能
深度学习
RAG数据嵌入和重排序:如何选择合适的模型在自然语言处理(NLP)领域,Retrieval-AugmentedGeneration(RAG)模型已经成为一种强大的工具,用于结合检索和生成能力来处理复杂的语言任务。RAG模型的核心在于两个关键步骤:数据嵌入(Embedding)和重排序(Re-ranking)。这两个步骤的选择和优化对于模型的性能至关重要。本文将探讨如何选择合适的模型来实现高效的数据
- 使用FastAPI部署bge-base和bge-reranker
MoyiTech
fastapipython开发语言RAGrerank
最近在做RAG项目,会频繁使用到本地embedding模型和rerank模型,但是每次跑demo都要用10来秒加载模型,非常慢,所以就封装了接口用于直接调用importosimportnumpyasnpimportloggingimportuvicornimportdatetimefromfastapiimportFastAPI,Security,HTTPExceptionfromfastapi.
- Advanced Embedded Systems Design
后端
AdvancedEmbeddedSystemsDesignCE323/860WeiyongSiMiniprojectCE323/CE860AdvancedEmbeddedSystemsDesignAssignmentTheassignmentisworth30%ofthetotalmarkforthismodule.Thisassignmentistodesignahomealarmsystemb
- 【机器学习】基于t-SNE数据可视化工程
无水先生
AI原理和python实现人工智能综合人工智能算法
一、说明t-SNE(t-DistributedStochasticNeighborEmbedding)是一种常用的非线性降维技术。它可以将高维数据映射到一个低维空间(通常是2D或3D)来便于可视化。Scikit-learnAPI提供TSNE类,以使用T-SNE方法可视化数据。在本教程中,我们将简要学习如何在Python中使用TSNE拟合和可视化数据。二、t-SNE是个什么?2.1什么是t-SNE?
- Transformer动画讲解 - 工作原理
ghx3110
transformer深度学习人工智能
Transformer模型在多模态数据处理中扮演着重要角色,其能够高效、准确地处理包含不同类型(如图像、文本、音频、视频等)的多模态数据。Transformer工作原理四部曲:Embedding(向量化)、Attention(注意力机制)、MLPs(多层感知机)和Unembedding(模型输出)。阶段一:Embedding(向量化)“Embedding”在字面上的翻译是“嵌入”,但在机器学习和自
- 基于LangChain-Chatchat实现的RAG-本地知识库的问答应用[5]-高阶实战微调
汀、人工智能
LLM工业级落地实践LLM技术汇总langchain人工智能大模型推理大模型微调p-tuningfastchatRAG
基于LangChain-Chatchat实现的RAG-本地知识库的问答应用[5]-高阶实战微调1.推荐的模型组合在默认的配置文件中,我们提供了以下模型组合LLM:Chatglm2-6bEmbeddingModels:m3e-baseTextSplitter:ChineseRecursiveTextSplitterKb_dataset:faiss我们推荐开发者根据自己的业务需求进行模型微调,如果不需
- 什么是yocto(理清yocto poky openembedded bitbake间关系)
口袋物联
TIAM62x平台从入门到精通系列yoctoyoctopokybitbakeopenembedded
一基本概念TheYoctoProjectisanopen-sourceprojectthatdeliversasetoftoolsthatcreateoperatingsystemimagesforembeddedLinuxsystems.PokyisthereferenceoperatingsystemdistributionbuiltwithYoctoProjecttools,andOpenE
- PyTorch深度学习框架进阶学习计划 - 第21天:自然语言处理基础
凡人的AI工具箱
深度学习pytorch学习人工智能AI编程AIGC自然语言处理
PyTorch深度学习框架进阶学习计划-第21天自然语言处理基础今天我们将深入学习自然语言处理(NLP)的基础概念,重点关注词嵌入技术、序列建模原理以及主流模型之间的区别和优缺点。通过理解这些基础知识,你将能够更好地应用PyTorch构建NLP应用。1.词嵌入原理与实现词嵌入(WordEmbeddings)是NLP中的核心概念,它将单词映射到连续向量空间,使得语义相似的词在向量空间中距离较近。为什
- 一个基于LSTM的字符级文本生成模型的训练+使用(pytorch)
一只小铁柱
lstmpytorch人工智能
一、代码实现1.配置文件config.pyimporttorch#设备配置DEVICE=torch.device('cuda'iftorch.cuda.is_available()else'cpu')#超参数和配置SEQ_LENGTH=100#输入序列长度BATCH_SIZE=64#批大小EMBEDDING_DIM=256#嵌入层维度HIDDEN_SIZE=512#LSTM隐藏层大小NUM_LAY
- 论文阅读:Personalized Purchase Prediction of Market with Wasserstein-Based Sequence Matching
Narcissus`小暮
一步步来学大数据推荐系统
PersonalizedPurchasePredictionofMarketwithWasserstein-BasedSequenceMatching概述问题背景及陈述预测算法步骤一:itemembeddings步骤二:计算wassersteinDistance步骤三:Wasserstein-BasedDynamicTimeWarping预测实验评价标准数据集对比的baseline结论市场篮子的应
- 论文阅读 EEG-TCNet
Plan-C-
论文阅读
EEG-TCNet:AnAccurateTemporalConvolutionalNetworkforEmbeddedMotor-ImageryBrain–MachineInterfaces1.Intrduction本文提出了一种新颖的时间卷积网络(TCN),在需要很少的可训练参数的情况下实现了出色的精度。EG-TCNET成功地推广了单个数据集,通过0.25的元效应优于MOABB的当前最新技术水平
- 探索未来:FacebookResearch的JEPa项目详解
瞿旺晟
探索未来:FacebookResearch的JEPa项目详解去发现同类优质开源项目:https://gitcode.com/项目简介是FacebookResearch推出的一个开源项目,全称为"JointEmbeddingofProgramsandAttributes"。它是一个用于程序理解和属性预测的深度学习框架,旨在提升代码的理解和自动化程度,为开发者提供更智能的编程辅助工具。技术分析**1.
- I-JEPA:联合嵌入预测架构的自监督学习实现
平奇群Derek
I-JEPA:联合嵌入预测架构的自监督学习实现I-JEPAImplementationofI-JEPAfrom"Self-SupervisedLearningfromImageswithaJoint-EmbeddingPredictiveArchitecture"项目地址:https://gitcode.com/gh_mirrors/ij/I-JEPA项目介绍欢迎来到I-JEPA,这是一个基于Se
- Deepseek结合AnythingLLM搭建个人本地智能知识库
曲幽
AI计算机deepseekai大模型ollamaanythingllm本地知识库
之前通过Ollama搭建了本地Deepseek大模型对话机制,但知识点仅限于Deepseek内部的数据,且目前数据截止时间为2024年7月,如果我们询问一些专业性比较强的内容,则Deepseek也显得无能为力,这就需要再给这个大脑外接一些文档数据了,通过AnythingLLM来Embedding外部文档。更多内容,可关注公众号“一名程序媛”,我们一起从0-1学编程1下载安装AnythingLLM有
- 快速入门:利用fast-elasticsearch-vector-scoring提升ES向量搜索效率
劳泉文Luna
快速入门:利用fast-elasticsearch-vector-scoring提升ES向量搜索效率fast-elasticsearch-vector-scoringScoredocumentsusingembedding-vectorsdot-productorcosine-similaritywithESLuceneengine项目地址:https://gitcode.com/gh_mirro
- 【高级RAG技巧】使用二阶段检索器平衡检索的效率和精度
深度学习机器
大语言模型深度学习入门人工智能语言模型
一传统方法之前的文章已经介绍过向量数据库在RAG(RetrievalAugmentedGenerative)中的应用,本文将会讨论另一个重要的工具-Embedding模型。一般来说,构建生产环境下的RAG系统是直接使用Embedding模型对用户输入的Query进行向量化表示,并且从已经构建好的向量数据库中检索出相关的段落用户大模型生成。但是这种方法很明显会受到Embedding模型性能的影响,比
- 在线office文件预览
大波V5
java
微软提供了两个在线预览office文件的服务https://view.officeapps.live.com/op/view.aspx?src=http://127.0.0.1/file.xlsxhttps://view.officeapps.live.com/op/embed.aspx?src=http://127.0.0.1/file.xlsx把src的值替换成自己的服务即可
- 第N4周:NLP中的文本嵌入
OreoCC
自然语言处理人工智能
本人往期文章可查阅:深度学习总结词嵌入是一种用于自然语言处理(NLP)的技术,用于将单词表示为数字,以便计算机可以处理它们。通俗的讲就是,一种把文本转为数值输入到计算机中的方法。之前文章中提到的将文本转换为字典序列、one-hot编码就是最早期的词嵌入方法。Embedding和EmbeddingBag则是PyTorch中的用来处理文本数据中词嵌入(wordembedding)的工具,它们将离散的词
- RoPE——Transformer 的旋转位置编码
机智的小神仙儿
深度学习大模型transformer深度学习人工智能
在自然语言处理领域,Transformer是现代深度学习模型的基础,而位置编码(PositionEmbedding)则是Transformer处理序列数据的关键模块之一。近年来,一种新型的位置编码方法RoPE(RotaryPositionEmbedding)得到了广泛关注。本文将全面解读RoPE的背景、原理、实现、优势及其应用场景,帮助读者深入理解这一方法。1.什么是RoPE?RoPE(Rotar
- 大模型与图数据库RAG通俗流程拆解
gallonyin
产品笔记AI知识图谱
图构建(略)neo4j、tugraph等均可,不影响GraphRAG核心框架模型向量化模型bce-embedding-base_v1重排序模型bce-reranker-base_v1大语言模型Qwen/Qwen2.5-32B-Instruct图数据库tugraph索引faiss核心流程这个调用链日志展示了一个完整的问答系统处理用户输入“百草园里有什么”的过程。本项目使用和参考了开源项目茴香豆。以下
- Failed to configure a DataSource: ‘url‘ attribute is not specified and no embedded datasource could
clownAdam
JavaJavaspringboot
问题:SpringBoot启动类时报错信息如下:ErrorstartingApplicationContext.Todisplaytheconditionsreportre-runyourapplicationwith'debug'enabled.2025-03-1000:52:29.412ERROR36776---[main]o.s.b.d.LoggingFailureAnalysisRepor
- 语义检索-BAAI Embedding语义向量模型深度解析[1-详细版]:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性
汀、人工智能
LLM工业级落地实践embeddinglangchain人工智能智能问答RAG检索增强生成大模型
语义检索-BAAIEmbedding语义向量模型深度解析[1-详细版]:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性语义向量模型(EmbeddingModel)已经被广泛应用于搜索、推荐、数据挖掘等重要领域。在大模型时代,它更是用于解决幻觉问题、知识时效问题、超长文本问题等各种大模型本身制约或不足的必要技术。然而,当前中文世界的高质量语义向量模型仍比较稀缺,且很少开源。为加快解决大模型
- 文档进行embedding,Faiss向量检索
被编程为难的小娃娃
embeddingfaiss
这里采用Langchain的HuggingFaceEmbeddings参照博主,改了一些东西,因为Langchain0.3在0.2的基础上进行了一定的修改fromlangchain.text_splitterimportRecursiveCharacterTextSplitterfromlangchain_huggingfaceimportHuggingFaceEmbeddingsfromlang
- Docker+Ollama+RAGFlow本地部署DeepSeek R1并构建本地知识库
康顺哥
AI大模型#docker容器llama语言模型aiAI编程
目录背景安装Docker设置Docker默认参数修改Docker保存服务程序的缓存路径为服务程序镜像设置别名为ollama设置专用参数安装ollama运行DeepSeekR1大模型安装Open-WebUI配置Open-WebUI检验DeepSeek的资源占用情况安装RAGFlow添加chat模型添加embedding模型创建知识库AI结合知识库聊天总结背景DeepSeek持续火爆,但官网访问经常出
- Triplet Loss原理及 Python实现
AIGC_ZY
DiffusionModelspython深度学习机器学习
Tripletloss最初是谷歌在FaceNet:AUnifiedEmbeddingforFaceRecognitionandClustering论文中提出的,可以学到较好的人脸的embeddingTripletLoss是一种用于训练特征嵌入(featureembedding)的损失函数,广泛应用于人脸识别、图像检索等需要度量相似性的任务。其核心思想是通过学习将同类样本的嵌入距离拉近,不同类样本的
- 向量数据库及其在大模型应用落地中的作用
一望无际的大草原
高级数据应用读书笔记工作总结数据库向量数据库解决方案
一、几个术语需要弄清楚几个术语,比如向量、Embedding、向量检索、向量数据库,具体如下。1.向量:为AI理解世界的通用数据形式,是多模态数据的压缩,任何模态数据都可以转为向量。文本直接送给计算机是无法认识的,而且是高维数据,需要对其进行向量化处理(即Embedding),处理完成后就形成一个个向量。2.Embedding:将文字文本转化为保留语义关系的向量文本,相当于利用embedding模
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">