Flink基础 -- 1.初识Flink

   最近工作不是很忙,开始再学习一些自己的东西,当然也是为之后的项目做准备,那就把矛头指向现在发展如日中天的Flink吧!

Apache Flink的引入

   这里摘抄一段别人对大数据计算技术发展的描述:

   这几年大数据的飞速发展,出现了很多热门的开源社区,其中著名的有 Hadoop、Storm,以及后来的 Spark,他们都有着各自专注的应用场景。Spark 掀开了内存计算的先河,也以内存为赌注,赢得了内存计算的飞速发展。Spark 的火热或多或少的掩盖了其他分布式计算的系统身影。就像 Flink,也就在这个时候默默的发展着。

   在国外一些社区,有很多人将大数据的计算引擎分成了 4 代,当然,也有很多人不会认同。我们先姑且这么认为和讨论。

   首先第一代的计算引擎,无疑就是 Hadoop 承载的 MapReduce。这里大家应该都不会对 MapReduce 陌生,它将计算分为两个阶段,分别为Map 和 Reduce。对于上层应用来说,就不得不想方设法去拆分算法,甚至于不得不在上层应用实现多个 Job 的串联,以完成一个完整的算法,例如迭代计算。

   由于这样的弊端,催生了支持 DAG 框架的产生。因此,支持 DAG 的框架被划分为第二代计算引擎。如 Tez 以及更上层的 Oozie。这里我们不去细究各种 DAG 实现之间的区别,不过对于当时的 Tez 和 Oozie 来说,大多还是批处理的任务。

   接下来就是以 Spark 为代表的第三代的计算引擎。第三代计算引擎的特点主要是 Job 内部的 DAG 支持(不跨越Job),以及强调的实时计算。在这里,很多人也会认为第三代计算引擎也能够很好的运行批处理的 Job。

   随着第三代计算引擎的出现,促进了上层应用快速发展,例如各种迭代计算的性能以及对流计算和 SQL 等的支持。Flink 的诞生就被归在了第四代。这应该主要表现在 Flink 对流计算的支持,以及更一步的实时性上面。当然Flink 也可以支持 Batch 的任务,以及 DAG 的运算。

Apache Flink的简介

  很多人可能都是在 2015 年才听到 Flink 这个词,其实早在 2008 年,Flink 的前身已经是柏林理工大学一个研究性项目, 在 2014 被 Apache 孵化器所接受,然后迅速地成为了 ASF(Apache Software Foundation)的顶级项目之一。Flink 的最新版本目前已经更新到了 0.10.0 了,在很多人感慨 Spark 的快速发展的同时,或许我们也该为 Flink的发展速度点个赞。

  Flink 是一个针对流数据和批数据的分布式处理引擎。它主要是由 Java 代码实现。目前主要还是依靠开源社区的贡献而发展。对 Flink 而言,其所要处理的主要场景就是流数据,批数据只是流数据的一个极限特例而已。再换句话说,Flink 会把所有任务当成流来处理,这也是其最大的特点。

  Flink 可以支持本地的快速迭代,以及一些环形的迭代任务。并且 Flink 可以定制化内存管理。在这点,如果要对比 Flink 和 Spark 的话,Flink 并没有将内存完全交给应用层。这也是为什么 Spark 相对于 Flink,更容易出现 OOM的原因(out of memory)。就框架本身与应用场景来说,Flink 更相似与 Storm。如果之前了解过 Storm 或者Flume 的读者,可能会更容易理解 Flink 的架构和很多概念。

  Apache Flink是一个面向数据流处理和批量数据处理的可分布式的开源计算框架,它基于同一个Flink流式执行模型(streaming execution model),能够支持流处理和批处理两种应用类型。由于流处理和批处理所提供的SLA(服务等级协议)是完全不相同, 流处理一般需要支持低延迟、Exactly-once保证,而批处理需要支持高吞吐、高效处理,所以在实现的时候通常是分别给出两套实现方法,或者通过一个独立的开源框架来实现其中每一种处理方案。比较典型的有:实现批处理的开源方案有MapReduce、Spark;实现流处理的开源方案有Storm;Spark的Streaming 其实本质上也是微批处理。
  Flink在实现流处理和批处理时,与传统的一些方案完全不同,它从另一个视角看待流处理和批处理,将二者统一起来:Flink是完全支持流处理,也就是说作为流处理看待时输入数据流是无界的;批处理被作为一种特殊的流处理,只是它的输入数据流被定义为有界的。

特性

  • 支持高吞吐、低延迟、高性能的流处理
  • 支持带有事件时间的窗口(Window)操作
  • 支持有状态计算的Exactly-once语义
  • 支持高度灵活的窗口(Window)操作,支持基于time、count、session,以及data-driven的窗口操作
  • 支持具有Backpressure功能的持续流模型
  • 支持基于轻量级分布式快照(Snapshot)实现的容错
  • 一个运行时同时支持Batch on Streaming处理和Streaming处理
  • Flink在JVM内部实现了自己的内存管理
  • 支持迭代计算
  • 支持程序自动优化:避免特定情况下Shuffle、排序等昂贵操作,中间结果有必要进行缓存

API支持

  • DataStream API
  • DataSet API
  • Table API
  • Streaming SQL

Libs支持

  • 支持复杂事件处理(CEP)
  • 支持机器学习(FlinkML)
  • 支持图分析处理(Gelly)
  • 支持关系数据处理(Table)

整体组件栈

Flink基础 -- 1.初识Flink_第1张图片

  • Deployment层: 该层主要涉及了Flink的部署模式,Flink支持多种部署模式:本地、集群(Standalone/YARN),(GCE/EC2)。
  • Runtime层:Runtime层提供了支持Flink计算的全部核心实现,比如:支持分布式Stream处理、JobGraph到ExecutionGraph的映射、调度等等,为上层API层提供基础服务。
  • API层: 主要实现了面向无界Stream的流处理和面向Batch的批处理API,其中面向流处理对应DataStream API,面向批处理对应DataSet API。
  • Libraries层:该层也可以称为Flink应用框架层,根据API层的划分,在API层之上构建的满足特定应用的实现计算框架,也分别对应于面向流处理和面向批处理两类。面向流处理支持:CEP(复杂事件处理)、基于SQL-like的操作(基于Table的关系操作);面向批处理支持:FlinkML(机器学习库)、Gelly(图处理)

编程模型

Flink基础 -- 1.初识Flink_第2张图片

  • 有状态的数据流处理层。最底层的抽象仅仅提供有状态的数据流,它通过处理函数(Process Function)嵌入到数据流api(DataStream API). 用户可以通过它自由的处理单流或者多流,并保持一致性和容错。同时用户可以注册事件时间和处理时间的回调处理,以实现复杂的计算逻辑。
  • 核心API层。 它提供了数据处理的基础模块,像各种transformation, join,aggregations,windows,stat 以及数据类型等等
  • Table API层。 定了围绕关系表的DSL(领域描述语言)。Table API遵循了关系模型的标准:Table类型关系型数据库中的表,API也提供了相应的操作,像select,project,join,group-by,aggregate等。Table API声明式的定义了逻辑上的操作(logical operation)不是code for the operation;Flink会对Table API逻辑在执行前进行优化。同时代码上,Flink允许混合使用Table API和DataStram/DataSet API
  • SQL层。 它很类似Table API的语法和表达,也是定义与Table API层次之上的,但是提供的是纯SQL的查询表达式。

结语:

  我们对Flink有个大概了解了,然后我们开始准备看着官网的例子开始跑程序吧,等有了一些亲身体验和实践后再来看那些理论应该会更好理解一些吧。那就开始下一步吧。
https://blog.csdn.net/Aeve_imp/article/details/86595560

你可能感兴趣的:(Flink)