Coursera机器学习 week2 多变量线性回归 编程作业代码

这是Coursera上 Week2 的 “多变量线性回归” 的编程作业代码。经过测验,全部通过。

包括以下八个文件:

%     warmUpExercise.m
%     plotData.m
%     gradientDescent.m
%     computeCost.m
%     gradientDescentMulti.m
%     computeCostMulti.m
%     featureNormalize.m
%     normalEqn.m

下面是 warmUpExercise.m 的代码:

function A = warmUpExercise()
%WARMUPEXERCISE Example function in octave
%   A = WARMUPEXERCISE() is an example function that returns the 5x5 identity matrix

A = [];
% ============= YOUR CODE HERE ==============
% Instructions: Return the 5x5 identity matrix 
%               In octave, we return values by defining which variables
%               represent the return values (at the top of the file)
%               and then set them accordingly. 

A = eye(5);

% ===========================================

end

下面是 plotData.m 的代码:

function plotData(x, y)
%PLOTDATA Plots the data points x and y into a new figure 
%   PLOTDATA(x,y) plots the data points and gives the figure axes labels of
%   population and profit.

% ====================== YOUR CODE HERE ======================
% Instructions: Plot the training data into a figure using the 
%               "figure" and "plot" commands. Set the axes labels using
%               the "xlabel" and "ylabel" commands. Assume the 
%               population and revenue data have been passed in
%               as the x and y arguments of this function.
%
% Hint: You can use the 'rx' option with plot to have the markers
%       appear as red crosses. Furthermore, you can make the
%       markers larger by using plot(..., 'rx', 'MarkerSize', 10);

figure; % open a new figure window

plot(x, y, 'rx', 'MarkerSize', 10);         % Plot the data
ylabel('Profit in $10,000s');               % Set the y-axis label
xlabel('Population of City in 10,000s');    % Set the x-axis label

% ============================================================

end

下面是 gradientDescent.m 的代码:

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
%   theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by 
%   taking num_iters gradient steps with learning rate alpha

% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);

for iter = 1:num_iters

    % ====================== YOUR CODE HERE ======================
    % Instructions: Perform a single gradient step on the parameter vector
    %               theta. 
    %
    % Hint: While debugging, it can be useful to print out the values
    %       of the cost function (computeCost) and gradient here.
    %

    tempTheta = theta; %save the theta from last iteration

    % Update for theta0
    theta(1) = tempTheta(1) - alpha / m * sum(X * tempTheta - y);

    % Update for theta1
    theta(2) = tempTheta(2) - alpha / m * sum((X * tempTheta - y) .* X(:,2));

    % ============================================================

    % Save the cost J in every iteration    
    J_history(iter) = computeCost(X, y, theta);

end

end

下面是 computeCost.m 的代码:

function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
%   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
%   parameter for linear regression to fit the data points in X and y

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly 
J = 0;

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
%               You should set J to the cost.

temp =  sum(((X * theta - y).^2));
J = 1 / (2*m) * temp;

% =========================================================================

end

下面是 gradientDescentMulti.m 的代码:

function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
%GRADIENTDESCENTMULTI Performs gradient descent to learn theta
% theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha

% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);

for iter = 1:num_iters

    % ====================== YOUR CODE HERE ======================
    % Instructions: Perform a single gradient step on the parameter vector
    % theta. 
    %
    % Hint: While debugging, it can be useful to print out the values
    % of the cost function (computeCostMulti) and gradient here.
    %

    tempTheta = theta; %save the theta from last iteration

    % Update for thetass
    for i = 1 : size(X,2)
        theta(i) = tempTheta(i) - alpha / m * sum((X * tempTheta - y) .* X(:,i));
    end

    % ============================================================

    % Save the cost J in every iteration 
    J_history(iter) = computeCostMulti(X, y, theta);

end

end

下面是 computeCostMulti.m 的代码:

function J = computeCostMulti(X, y, theta)
%COMPUTECOSTMULTI Compute cost for linear regression with multiple variables
%   J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the
%   parameter for linear regression to fit the data points in X and y

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly 
J = 0;

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
%               You should set J to the cost.

J = 1 / (2*m) * sum(((X * theta - y).^2));

% =========================================================================

end

下面是 featureNormalize.m 的代码:

function [X_norm, mu, sigma] = featureNormalize(X)
%FEATURENORMALIZE Normalizes the features in X 
%   FEATURENORMALIZE(X) returns a normalized version of X where
%   the mean value of each feature is 0 and the standard deviation
%   is 1. This is often a good preprocessing step to do when
%   working with learning algorithms.

% You need to set these values correctly
X_norm = X;
mu = zeros(1, size(X, 2));
sigma = zeros(1, size(X, 2));

% ====================== YOUR CODE HERE ======================
% Instructions: First, for each feature dimension, compute the mean
%               of the feature and subtract it from the dataset,
%               storing the mean value in mu. Next, compute the 
%               standard deviation of each feature and divide
%               each feature by it's standard deviation, storing
%               the standard deviation in sigma. 
%
%               Note that X is a matrix where each column is a 
%               feature and each row is an example. You need 
%               to perform the normalization separately for 
%               each feature. 
%
% Hint: You might find the 'mean' and 'std' functions useful.
%       

for i = 1 : size(X,2)
    % mu(i) = sum(X(:,i)) / size(X,1);
    mu(i) = mean(X(:,i)); % 替换上面这行代码。我是matlab新手,感谢一楼的建议! :)
    sigma(i) = std(X(:,i));
    X_norm(:,i) = (X(:,i) - mu(i)) / sigma(i);
end

% ============================================================

end

下面是 normalEqn.m 的代码:

function [theta] = normalEqn(X, y)
%NORMALEQN Computes the closed-form solution to linear regression 
%   NORMALEQN(X,y) computes the closed-form solution to linear 
%   regression using the normal equations.

%theta = zeros(size(X, 2), 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Complete the code to compute the closed form solution
%               to linear regression and put the result in theta.
%

% ---------------------- Sample Solution ----------------------

theta = (X' * X) \ X' * y;

% -------------------------------------------------------------
% ============================================================
end

你可能感兴趣的:(Machine,Learning,Coursera,斯坦福大学机器学习笔记)