- 鄂维南:从数学角度,理解机器学习的「黑魔法」,并应用于更广泛的科学问题...
人工智能与算法学习
神经网络人工智能大数据算法python
作者|Hertz来源|科学智能AISI北京时间2022年7月8日晚上22:30,鄂维南院士在2022年的国际数学家大会上作一小时大会报告(plenarytalk)。今天我们带来鄂老师演讲内容的分享。鄂老师首先分享了他对机器学习数学本质的理解(函数逼近、概率分布的逼近与采样、Bellman方程的求解);然后介绍了机器学习模型的逼近误差、泛化性质以及训练等方面的数学理论;最后介绍如何利用机器学习来求解
- 机器学习数学基础
对许
基础理论机器学习概率论线性代数
机器学习基础1、标量、向量、矩阵、张量2、概率函数、概率分布、概率密度、分布函数3、向量的线性相关性4、最大似然估计5、正态分布(高斯分布)6、向量的外积(叉积)7、向量的内积(点积)8、超平面(H)1、标量、向量、矩阵、张量标量、向量、矩阵和张量是线性代数中不同维度的数学对象,它们之间的区别在于维数和结构:标量(Scalar):标量是一个数值,只有大小,没有方向。例如物理学中的时间、质量、温度等
- 2018年机器学习数学基础及算法视频教程 20课 适合基础学习 高清课件代码答疑全
花心五花肉
课程介绍:不管是算法工程师还是机器学习相关岗位,很多企业招人时都会选择数学专业的毕业生,更有甚至数学的优先级超过计算机专业,尤其人工智能方面,Al人才门槛高的让人望而却步,其中一个重要的原因就是对数学基础的要求太高,从而限制了很大一批人的进入。课程优势:相关实用数学基础原理,课程设计循序渐进,妙趣横生,使用多个源于生活的场景深入浅出的讲解,动画效果和有趣小游戏案例贯穿全课程,带领你在不经意间轻轻松
- c++ 开源库
geyan888
C++
文章目录标准库框架人工智能异步事件循环音频生态学压缩并发性容器密码学数据库调试游戏引擎图形用户界面图形图像处理国际化Json日志机器学习数学多媒体网络物理学机器人学科学计算脚本序列化视频虚拟机Web应用框架XML多项混杂软件编译器在线编译器调试器集成开发环境(IDE)构建系统静态代码分析标准库C++标准库,包括了STL容器,算法和函数等。C++StandardLibrary:是一系列类和函数的集合
- Python地理数据机器学习数学
亚图跨际
Python交叉知识python机器学习地理数据
地理数据地理数据是存储在地理信息系统(GIS)中的位置信息。通过查看具有地理成分的数据,我们可以通过不同的视角来看待它。用地理数据解决位置问题需要空间思维。让我们深入了解地理数据的类型、主题和来源。类型地理数据有不同类型,每种类型在使用方式上都有其独特的价值。无论数据来自政府、私人来源还是开放数据,了解数据的类型、数据的来源、数据的收集方式以及数据的用途都很重要。矢量文件:矢量数据由顶点和路径组成
- 【机器学习】给大家推荐几个资源
人工智能大讲堂
学习资料机器学习深度学习机器学习人工智能
我写博客的目的就是让大家了解人工智能背后的数学原理,但人工智能这个话题太大了,背后涉及到的知识非常庞大,仅靠写几篇文章传播力度有限,况且知识传播过程中也容易引入误解,所以授之以鱼不如授之以渔,这里给大家推荐一些资源。看书是学习必不可少的方式之一,今天给大家推荐一本机器学习数学原理和应用的书:MATHEMATICSFORMACHINELEARNING,PDF路径如下:https://mml-book
- C++资源大全
lvming-elena
C++
目录(?)[-]标准库框架人工智能异步事件循环音频生态学压缩并发性容器密码学数据库调试游戏引擎图形用户界面图形图像处理国际化Jason日志机器学习数学多媒体网络物理学机器人学科学计算脚本序列化视频虚拟机Web应用框架XML多项混杂软件编译器在线编译器调试器集成开发环境IDE构建系统静态代码分析原文地址:http://www.csdn.net/article/2014-10-24/2822269-c
- 机器学习数学基础--凸优化
One2332x
几何学线性代数算法
机器学习数学基础--凸优化1.计算几何是研究什么的?2.计算几何理论中(或凸集中)过两点的一条直线的表达式,是如何描述的?与初中数学中那些直线方程有什么差异?有什么好处?**在计算几何理论中(或凸集中)的表达式****在初中数学中的表达式****两者对比**3.凸集是什么?直线是凸集吗?是仿射集吗?**凸集是什么?****直线是凸集吗?****直线是仿射集吗?**4.三维空间中的一个平面,如何表达
- 机器学习数学基础
ln_ivy
这两天集中学习了机器学习的数学基础,主要是三部分:1.线性代数:这部分主要是矩阵的运算和分解,几乎用numpy中函数实现;至于分解部分,有特征分解个奇异值分解两部分,可应用于降纬处理。2.微积分学:这部分的应用重点是函数,如何求解目标函数及最优解(用梯度下降的算法),再介绍了最小二乘法。3.概率论
- 【AI】数学基础——高数(函数&微分部分)
AmosTian
数学AI机器学习机器学习AI高数
参考:https://www.bilibili.com/video/BV1mM411r7ko?p=1&vd_source=260d5bbbf395fd4a9b3e978c7abde437唐宇迪:机器学习数学基础文章目录1.1函数1.1.1函数分类1.1.2常见函数指/对数函数分段函数原函数&反函数sigmod函数Relu函数(非负函数)复合函数1.1.3性质1.2极限1.2.1数列极限1.2.2函
- 机器学习数学基础之高数篇——简单的泰勒公式(python版)
水龙吟唱
机器学习数学基础python机器学习概率论泰勒公式
不少同学一提到泰勒公式,脑海里立马浮现高大上的定义和长长的公式,令人望而生畏。实际上,泰勒公式没有那么可怕,它是用简单的多项式来逼近一个光滑的函数,从而近似替代不熟悉的函数。由于泰勒公式具有将复杂函数近似成多个幂函数叠加形式的性质,可以用它进行比较、求极限、求导、解微分方程等。我们先来看一下泰勒公式的发明者,布鲁克·泰勒——布鲁克·泰勒(BrookTaylor,1685-1732),英国数学家,牛
- 线性代数 | 机器学习数学基础
ReturnTmp
#机器学习机器学习深度学习人工智能
前言线性代数(linearalgebra)是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。本文主要介绍机器学习中所用到的线性代数核心基础概念,供读者学习阶段查漏补缺或是快速学习参考。线性代数行列式1.行列式按行(列)展开定理(1)设A=(aij)n×nA=(a_{{ij}})_{n\timesn}A=(aij)n×n,则:ai1Aj1+a
- 【统计基础】贝叶斯理论和神经网络
无水先生
AI原理和python实现神经网络人工智能深度学习
一、说明贝叶斯网络是最基础的神经网络理论,本文不是最基础的概念性论文,而是有一定基础,最起码概念建立起来后的说理。这种说理能够启发应用,也能够促进创新思维,建议保存慢慢品尝。二、贝叶斯神经网络简介贝叶斯神经网络简介•DavidStutz深度学习机器学习数学不确定性估计随着深度神经网络的日益成功,它们在鲁棒性(例如,针对各种对抗性示例)和置信度估计方面的可靠性变得越来越重要。贝叶斯神经网络有望通过直
- ML&DEV[1] | 机器学习数学基础入门线路
机智的叉烧
【ML&DEV】这是大家没有看过的船新栏目!ML表示机器学习,DEV表示开发,本专栏旨在为大家分享作为算法工程师的工作,机器学习生态下的有关模型方法和技术,从数据生产到模型部署维护监控全流程,预备知识、理论、技术、经验等都会涉及,欢迎大家关注!往期回顾:ML&DEV[0]|栏目说明提问回复0805|自律-入门-实习-资源NLP.TM[16]|SIGIR2019:深度NLP在搜索系统中的应用R&S|
- 机器学习数学基础《线性代数及其应用》第4版中文PDF+第5版英文PDF+习题指导+David C. Lay
技术人生666
线性代数是处理矩阵和向量空间的数学分支,在现代科学的各个领域都有应用,尤其是从事数据分析、机器学习、自然语言处理等专业的朋友,必须学习而且需要搞懂。推荐学习DavidC.Lay的《线性代数及其应用》,书中有大量的应用实例,内容结构安排的很好,前几章就引入子空间,向量,线性变换的概念,还介绍了一下线性代数的核心思想和研究内容,而后面几章的内容都紧扣这些概念学习参考:《线性代数及其应用》中文PDF(第
- Task1 CH1机器学习数学基础(2天)
二龙山高哥
image.png以下有四种情况:1.a,b都为负image.png2.a-b+image.png3.a+b-image.png4.a,b都为正image.png
- 机器学习数学基础:数理统计与描述性统计
小白学视觉
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达所谓机器学习和深度学习,背后的逻辑都是数学,所以数学基础在这个领域非常关键,而统计学又是重中之重,机器学习从某种意义上来说就是一种统计学习。今天是概率统计基础的第二篇文章,基于第一篇随机变量与随机事件进行整理,首先理一理这里面的逻辑,第一篇的内容蕴涵了大部分概率论的知识(除了大数定律和中心极限定理这种理论性的支持,后期有机会会补
- python 数学期望_机器学习数学笔记|偏度与峰度及其python实现
weixin_39711348
python数学期望
机器学习数学笔记|偏度与峰度及其python实现觉得有用的话,欢迎一起讨论相互学习~本博客为七月在线邹博老师机器学习数学课程学习笔记为七月在线打call!!课程传送门矩对于随机变量X,X的K阶原点矩为\[E(X^{k})\]X的K阶中心矩为\[E([X-E(X)]^{k})\]期望实际上是随机变量X的1阶原点矩,方差实际上是随机变量X的2阶中心矩变异系数(CoefficientofVariatio
- 机器学习数学基础-线性代数
visionshop
数学理论
转载出处:线代专栏:https://zhuanlan.zhihu.com/p/30191876概率统计:https://zhuanlan.zhihu.com/p/30314229优化(上):https://zhuanlan.zhihu.com/p/30383127优化(下):https://zhuanlan.zhihu.com/p/30486793信息论及其他:https://zhuanlan.z
- 前置机器学习(一):数学符号及希腊字母
蔡永吉
MachineLearning机器学习
本文收录于机器学习前置教程系列。本文列出了常用的机器学习数学符号(Mathematicalnotations),包含代数、微积分、线性代数、概率论、集合论、统计学以及希腊字母。代数符号名称描述例子(f∘g)复合函数嵌套函数(f∘g)(x)=f(g(x))∆德耳塔变化/区别∆x=x_1-x_0e欧拉数e=2.718281828$s=\frac{1}{1+e^{-z}}$∑求和求和∑x_i=x_1+x
- 【机器学习基础】前置知识(一):数学符号及希腊字母
风度78
人工智能线性代数统计学sms3d
本文列出了常用的机器学习数学符号(Mathematicalnotations),包含代数、微积分、线性代数、概率论、集合论、统计学以及希腊字母。代数符号名称描述例子(f∘g)复合函数嵌套函数(f∘g)(x)=f(g(x))∆德耳塔变化/区别∆x=x_1-x_0e欧拉数e=2.718281828s=11+e−z∑求和求和∑x_i=x_1+x_2+x_3∏大写派所有数的乘积∏x_i=x_1∙x_2∙x
- 机器学习中的数学-期望、方差与协方差
Something Just Like
数学机器学习机器学习期望方差协方差
原创文章,如需转载请保留出处本博客为七月在线邹博老师机器学习数学课程学习笔记一.期望是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。1.1期望的性质无条件成立E(kX)=kE(X)E(X+Y)=E(X)+E(Y)若X和Y互相独立E(XY)=E(X)E(Y)反之不成立。实际上,若E(XY)=E(X)E(Y),只能说明X和Y不相关。1.2事件的独立性1
- 机器学习数学基础-微积分
Nine嘿嘿
极限通俗语言:函数f在x0处的极限为L数学记号:limf(x)=L微分学Jensen不等式
- 机器学习数学基础
LiuV.
线性代数概率论
文章目录第一章、机器学习数学基础1.1线性代数1.1.1矩阵中的基本概念1.1.2矩阵的加法1.1.3矩阵的乘法1.1.4矩阵的转置1.1.5矩阵的运算法则1.1.6矩阵的逆1.2微积分1.2.1导数1.2.2偏导数1.2.3方向导数和梯度1.2.4凸函数和凹函数1.3概率与统计1.3.1常用统计变量1.3.2常见概率分布1.3.3重要概率公式第一章、机器学习数学基础1.1线性代数1.1.1矩阵中
- 机器学习数学原理(2)——广义线性模型
X_XZhang
机器学习算法机器学习数学算法
机器学习数学原理(2)——广义线性模型这篇博文主要介绍的是在机器学习中的回归问题以及分类问题中的一个非常具有概括性的模型:广义线性模型(GeneralizedLinearModels,简称GLMs),这类模型包括了回归问题中的正态分布,也包含了分类问题中的伯努利分布。随着我们的分析我们会发现,广义线性模型不仅可以导出Logistics回归,也可以导出Softmax回归。1.指数族在导出模型之前,先
- 机器学习数学原理(1)——极大似然估计法
鹏大大大
Python机器学习极大似然估计法线性回归
机器学习数学原理(1)——极大似然估计法事实上机器学习的大部分算法都是以数理统计和概率论为理论基础构建的。笔者在学习机器学习的过程中,意识到其实机器学习中的很多假设背后都是有着数学原理支撑的,从而使得这些假设不再是“看似合理”。这里笔者便将一些学习过程中的理解整理成一个系列,希望能够在帮助自己整理知识结构体系的同时,也能给大家带来一些帮助。资料参考的是华中科技大学出版社出版由刘次华主编的《概率论与
- Lesson 4.1-4.2 逻辑回归模型构建与多分类学习方法&逻辑回归参数估计
Grateful_Dead424
机器学习逻辑回归分类人工智能
Lesson4.1逻辑回归模型构建与多分类学习方法首先我们来讨论关于逻辑回归的基本原理,当然,在此过程中,我们也将进一步补充机器学习数学理论基础。逻辑回归的基本原理,从整体上来划分可以分为两个部分,其一是关于模型方程的构建,也就是方程的基本形态,当然也包括模型的基本性质及其结果解读;其二则是模型参数求解,即在构建完模型之后如何利用数学工具求解最佳参数。而这两部分其实都可以从多个角度出发进行理解,基
- Datawhale 2021.7集成学习 笔记
今夜我说
个人Datawhale集成学习python
Dtawhale集成学习Github开源地址CH1-机器学习数学基础python笔记(基于讲义和自己的笔记)机器学习数学基础基于python-B站视频高等数学和线性代数概率论和随机过程初步数理统计(极大似然估计)极大似然估计与贝叶斯估计随机过程基础与泊松分布马尔可夫过程、鞅过程与高斯过程拒绝采样和MCMC采样CH2-机器学习基础模型回顾机器学习基础模型回顾-B站视频有监督学习和无监督学习回归问题的
- 机器学习数学基础(二):概率论与统计量、大数定律、似然估计
'仰望星空,脚踏实地'-菱
机器学习基础机器学习概率论python人工智能
机器学习数学基础(二)概率论概率论基础初步认识概率公式常见概率分布两点分布二项分布Bernoullidistribution泊松分布均匀分布指数分布正态分布Beta分布总结参数、期望、方差sigmoid/logistic函数统计量期望/方差/协方差/相关系数期望方差协方差相关系数独立和不相关大数定律切比雪夫大数定律伯努利定理中心极限定理最大似然估计什么是最大似然估计怎么求最大似然估计二项分布的最大
- 机器学习数学基础四:随机变量和概率论基础
喜欢吃豆
机器学习机器学习
目录一,连续与离散随机变量1,离散型随机变量2,连续型随机变量3,简单随机抽样4,似然函数5,极大似然估计例子:二,概率论基础1,概率论是干什么的?2,随机事件是什么?3,概率与频率4,古典概型5,条件概率6,独立性7,独立试验8,二维随机变量1)二维离散型随机变量2)二维连续型随机变量例子:9,边缘分布1)离散型随机变量边缘分布2)连续型随机变量边缘分布例子:10,期望11,期望求解例子:12,
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb