大概网上都有很多了,我直接上代码,可以直接运行的,但是文件路径什么的需要大家自己改
1、神经网络结构
import tensorflow as tf
#
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500
def get_weight_variable(shape, regularizer):
weights = tf.get_variable("weights", shape, initializer = tf.truncated_normal_initializer(stddev=0.1))
if regularizer!=None:
tf.add_to_collection('losses', regularizer(weights))
return weights
def inference(input_tensor, regularizer):
with tf.variable_scope('layer1'):
weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases",[LAYER1_NODE],initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor,weights) + biases)
with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE], initializer = tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights)+biases
return layer2
2、训练模型并保存
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_inference_529
# 配置参数
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 50000
MOVING_AVERAGE_DECAY = 0.99
# 保存模型路径
MODEL_SAVE_PATH = "model/"
MODEL_NAME = "model.ckpt"
def train(mnist):
# 1
x = tf.placeholder(tf.float32,[None, mnist_inference_529.INPUT_NODE], name='x_INPUT')
y_ = tf.placeholder(tf.float32,[None, mnist_inference_529.OUTPUT_NODE])
regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
y = mnist_inference_529.inference(x, regularizer)
# 2
global_step = tf.Variable(0, trainable=False)
variable_average = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variable_average_op = variable_average.apply(tf.trainable_variables())
# 3
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_,1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
# 4
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
# 5
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
# 6
with tf.control_dependencies([train_step, variable_average_op]):
train_op = tf.no_op(name='train')
saver = tf.train.Saver()
# 7
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x:xs,y_:ys})
if i % 1000==0:
print("After %d training step(s), loss on training batch is %g."%(step, loss_value))
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
def main(argv=None):
mnist = input_data.read_data_sets("/path/to/mnist_data", one_hot = True)
train(mnist)
if __name__=='__main__':
tf.app.run()
3、测试模型,正确率为0.9842
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_inference_529
import mnist_train_529
EVAL_INTERVAL_SECS = 10
def evaluate(mnist):
x = tf.placeholder(tf.float32, [None, mnist_inference_529.INPUT_NODE])
y_= tf.placeholder(tf.float32, [None, mnist_inference_529.OUTPUT_NODE])
validate_feed = {x:mnist.validation.images, y_:mnist.validation.labels}
y = mnist_inference_529.inference(x,None)
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
variable_averages = tf.train.ExponentialMovingAverage(mnist_train_529.MOVING_AVERAGE_DECAY)
variable_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variable_to_restore)
while True:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(mnist_train_529.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess,ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy, feed_dict=validate_feed)
print("After %s training step(s), validation accuracy = %g"%(global_step, accuracy_score))
else:
print('No checkpoint file found')
return
time.sleep(EVAL_INTERVAL_SECS)
def main(argv=None):
mnist = input_data.read_data_sets("data/",one_hot=True)
evaluate(mnist)
if __name__=='__main__':
main()