- matlab mle 优化,MLE+: Matlab Toolbox for Integrated Modeling, Control and Optimization for Buildings...
Simon Zhong
matlabmle优化
摘要:FollowingunilateralopticnervesectioninadultPVGhoodedrat,theaxonguidancecueephrin-A2isup-regulatedincaudalbutnotrostralsuperiorcolliculus(SC)andtheEphA5receptorisdown-regulatedinaxotomisedretinalgan
- 【论文速读】| SEAS:大语言模型的自进化对抗性安全优化
云起无垠
论文速读/精读语言模型安全人工智能
本次分享论文:SEAS:Self-EvolvingAdversarialSafetyOptimizationforLargeLanguageModels基本信息原文作者:MuxiDiao,RumeiLi,ShiyangLiu,GuogangLiao,JingangWang,XunliangCai,WeiranXu作者单位:北京邮电大学,美团关键词:大语言模型(LLM),对抗安全,红队,模型优化,自
- Hexagon_DSP_User_Guide(2)
weixin_38498942
tools简介dsp开发开发语言tool
Hexagon_DSP_User_Guide(2)4.2Guidelinesforassemblyandintrinsicoptimization4.2.1Maximizeinstructionsperpacket4.2.1.1Scalarinstructionpackingrules4.2.1.2HVXpackingrules4.2.2Understandandreducestalls4.2.2
- DAG (directed acyclic graph) 作为大数据执行引擎的优点
joeywen
分布式计算StormSparkStorm杂谈StormsparkDAG
TL;DR-ConceptuallyDAGmodelisastrictgeneralizationofMapReducemodel.DAG-basedsystemslikeSparkandTezthatareawareofthewholeDAGofoperationscandobetterglobaloptimizationsthansystemslikeHadoopMapReducewhicha
- 旋转目标检测:mmrotate仓库中 “主要模型” 及其 “配置文件” 的列表
沉浸式AI
AI与SLAM论文解析旋转目标检测深度学习mmrotate
mmrotate目录:mmrotate仓库中的主要模型和配置BackgroundandMotivation背景与动机MethodsOverview方法概述1.CFACFA:Convex-hullFeatureAdaptationforOrientedandDenselyPackedObjectDetectionCFA:用于定向和密集对象检测的凸包特征适应2.ConvNeXtConvNeXt:ACo
- 【论文简介】Circle Loss: A Unified Perspective of Pair Similarity Optimization
萝莉狼
machinelearningcirclelossdeepfeaturelearning
CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization旷世cvpr2020的一篇文章,站在更高的视角,统一了deepfeaturelearning的两大基础loss:基于class-levellabel的loss(如softmax+crossentropy)和基于pair-wiselabel的loss(如tripletloss),指出了
- Circle Loss: A Unified Perspective of Pair Similarity Optimization简要阅读笔记
dailleson_
机器学习机器学习数据挖掘神经网络深度学习自然语言处理
1.背景常见的分类损失函数可以概括为减小类内距离sns_nsn,增大类间距离sps_psp。优化目标如下:min(sn−sp)min(s_n-s_p)min(sn−sp)2.存在的问题优化不够灵活。优化目标对sns_nsn和sps_psp的惩罚作用是相等的,二者的系数都为1。例如{sn,sp}={0.1,0.5}\{s_n,s_p\}=\{0.1,0.5\}{sn,sp}={0.1,0.5}。这个
- [论文笔记]Circle Loss: A Unified Perspective of Pair Similarity Optimization
愤怒的可乐
#文本匹配[论文]论文翻译/笔记自然语言处理论文阅读人工智能
引言为了理解CoSENT的loss,今天来读一下CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization。为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。这篇论文从对深度特征学习的成对相似度优化角度出发,旨在最大化同类之间的相似度sps_ps
- 凸优化学习之旅
还有你Y
最优化学习
目录标题专业名词MM算法CCP算法:代码说明SCA算法:连续松弛梯度投影算法分支定界搜索法凸问题辨别OA算法λ-representationADMM算法代码说明BCD算法BCD(BlockCoordinateDescent)代码示例与ADMM的区别总结2024年5月6日15:15:26专业名词DC问题:DifferenceofConvex。Difference理解为差,convex是凸,DC问题就
- 探索智能边缘计算:Game-Theoretic-Deep-Reinforcement-Learning
瞿旺晟
探索智能边缘计算:Game-Theoretic-Deep-Reinforcement-LearningGame-Theoretic-Deep-Reinforcement-LearningCodeofPaper"JointTaskOffloadingandResourceOptimizationinNOMA-basedVehicularEdgeComputing:AGame-TheoreticDRL
- 大模型对齐方法笔记一:DPO及其变种IPO、KTO、CPO
chencjiajy
深度学习笔记机器学习人工智能
DPODPO(DirectPreferenceOptimization)出自2023年5月的斯坦福大学研究院的论文《DirectPreferenceOptimization:YourLanguageModelisSecretlyaRewardModel》,大概是2023-2024年最广为人知的RLHF的替代对齐方法了。DPO的主要思想是在强化学习的目标函数中建立决策函数与奖励函数之间的关系,以规避
- day59-graph theory-part09-8.30
bbrruunnoo
python开发语言算法
tasksfortoday:1.digkstra堆优化版47.参加科学大会2.bellman_ford算法94.城市间货物运输I---------------------------------------------------------------------------------1.dijkstra堆优化版Thisisanoptimizationforthevanilladijkstra
- python实现蚁群算法
孺子牛 for world
python算法开发语言
蚁群算法(AntColonyOptimization,ACO)是一种模拟蚂蚁觅食行为的启发式算法,常用于解决优化问题,如旅行商问题(TSP)、调度问题等。这里,将提供一个简化的蚁群算法实现,用于解决旅行商问题(TSP)。蚁群算法(ACO)解决TSP问题的基本步骤:初始化:设置蚂蚁数量、信息素挥发系数、信息素增加强度系数等参数,初始化信息素矩阵。构建解:每只蚂蚁随机选择起点,根据信息素浓度和启发式信
- 理解PyTorch版YOLOv5模型构架
LabVIEW_Python
一个深度学习模型,可以拆解为:模型构架(ModelArchitecture):下面详述激活函数(ActivationFunction):YOLOv5在隐藏层中使用了LeakyReLU激活函数,在最后的检测层中使用了Sigmoid激活函数,参考这里优化函数(OptimizationFunction):YOLOv5的默认优化算法是:SGD;可以通过命令行参数更改为Adam损失函数(LossFuncti
- mojo InlinedString实现及详解
启航学途
Mojomojo
inlined_stringImplementsastringthathasasmall-stringoptimizationwhichavoidsheapallocationsforshortstrings.InlinedStringAstringthatperformssmall-stringoptimizationtoavoidheapallocationsforshortstrings.A
- 【HTML】语义化
全宇宙最最帅气的哆啦A梦小怪兽
html前端
根据内容的结构选择合适的标签优点增加代码可读性,结构清晰,便于开发和维护;对机器友好,文字表现力丰富,有利于SEO。SEO(SearchEngineOptimization)是搜索引擎优化,为了让⽤户在搜索和⽹站相关的关键词的时候,可以使⽹站在搜索引擎的排名尽量靠前,从⽽增加流量。方便设备解析(如盲⼈阅读器等),可⽤于智能分析;在没有CSS样式下,⻚⾯也能呈现出很好地内容结构、代码结构。常见的语义
- Introduction to linear optimization 第二章全部课后题答案
心态与习惯
数学优化linearoptimizationintroduction答案课后题
费了好长时间,终于把这本经典理论教材第二章的课后题做完了。大部分都是证明题,很多都是比较有难度的。不少题我参考了网上找到的一些资料的思路,但是有一些题目我觉得这些网上找到的答案也不太好,自己修正完善了下,少部分题目自己独立完成。我把答案放在一个Jupyterbook上,见链接:第二章答案
- 寻参算法之蜘蛛猴优化算法
Network_Engineer
机器学习启发式算法算法深度学习人工智能机器学习
蜘蛛猴优化算法(SpiderMonkeyOptimization,SMO)来历蜘蛛猴优化算法(SpiderMonkeyOptimization,SMO)是受蜘蛛猴觅食行为启发的一种群体智能优化算法。该算法通过模拟蜘蛛猴在森林中觅食的行为,解决复杂的优化问题。自然界中的原型在自然界中,蜘蛛猴在觅食时会通过跳跃和移动寻找食物。蜘蛛猴群体通过信息共享和合作行为,能够高效地找到食物源。SMO通过模拟这一行
- Go 1.22在性能方面有哪些提升?
Toormi
Golanggolang开发语言后端
Go1.22版本在性能方面进行了多项优化,主要包括以下几个方面:1.内存优化CPU性能提升:Go运行时的内存优化使得CPU性能提高了1-3%。这一改进不仅减少了大多数Go程序的内存开销约1%,还提升了整体运行效率[2]。2.Profile-GuidedOptimization(PGO)改进的PGO:Go1.22继续改进了在Go1.21中引入的PGO功能,特别是在接口方法调用的静态调度方面。通过更好
- Go 1.21在性能方面有哪些提升?
Toormi
Golanggolang开发语言后端
Go1.21版本在性能方面取得了多项重要进展,主要体现在以下几个方面:1.Profile-GuidedOptimization(PGO)Go1.21正式推出了PGO功能,使用PGO构建的Go程序性能通常可提升2-7%[2][5]。编译器本身也采用了PGO优化,使得编译速度提高了2-4%[2][3]。2.垃圾回收优化通过调优垃圾回收器,某些应用程序的尾部延迟可减少高达40%[3]。3.其他性能改进在
- 路径优化算法 | 基于蚁群的城市路径优化算法应用及其Matlab实现
算法如诗
路径优化算法(PathOptimization)算法matlab路径优化算法
蚁群算法(AntColonyOptimization,ACO)是一种模拟自然界中蚂蚁觅食行为的优化算法,用于解决如旅行商问题(TSP)等组合优化问题。在蚁群算法中,每只蚂蚁在搜索路径时都会释放信息素,并根据信息素浓度和其他启发式信息来选择下一个节点。随着时间的推移,较短的路径上累积的信息素会更多,从而吸引更多的蚂蚁,最终找到最优路径。在城市路径优化问题中,蚁群算法可以用于找到连接多个城市的最短路径
- 【改进算法】【IHAOAVOA】天鹰优化算法和非洲秃鹫混合优化算法
科研工作站
智能算法算法智能算法天鹰优化算法非洲秃鹫算法
目录1主要内容IHAOAVOA流程图主要创新点2部分代码3程序结果4下载链接1主要内容该程序复现《IHAOAVOA:AnimprovedhybridaquilaoptimizerandAfricanvulturesoptimizationalgorithmforglobaloptimizationproblems》,天鹰优化算法(AO)和非洲秃鹫算法(AVOA)各有优势:AO具有强大的全局勘探能力
- Introduction CMU最优控制16-745超详细学习笔记
我爱科研00
线性代数动态规划
CMU最优控制16-745超详细学习笔记背景跌跌撞撞入坑Optimization-basedMotionPlanning和OptimalControl已经大半年啦,这大半年来迷迷糊糊看了不少相关资料和论文,想借这个机会来整理一下相关的内容,也算是给自己写论文理清一下思路。去年年底做一个移动机械臂移动操作mobilemanipulation课题看了ETHRSL开源框架OCS2(OptimalCont
- 4.SEO
好好学习_fighting
HTMLhtml
SEO经典真题请描述下SEO中的TDK?什么是SEO?SEO由英文SearchEngineOptimization缩写而来,中文意译为“搜索引擎优化”。其实叫做针对搜索引擎优化更容易理解。它是指从自然搜索结果获得网站流量的技术和过程,是在了解搜索引擎自然排名机制的基础上,对网站进行内部及外部的调整优化,改进网站在搜索引擎中的关键词自然排名,获得更多流量,从而达成网站销售及品牌建设的目标。如何进行S
- 10 中科院1区期刊优化算法|基于开普勒优化-卷积-双向长短期记忆网络-注意力时序预测Matlab程序KOA-CNN-BiLSTM-Attention
机器不会学习CSJ
时间序列预测算法网络matlabcnnlstm深度学习
文章目录一、开普勒优化算法二、CNN卷积神经网络三、BiLSTM双向长短期记忆网络四、注意力机制五、KOA-CNN-BiLSTM-Attention时间序列数据预测模型六、获取方式一、开普勒优化算法基于物理学定律的启发,开普勒优化算法(KeplerOptimizationAlgorithm,KOA)是一种元启发式算法,灵感来源于开普勒的行星运动规律。该算法模拟行星在不同时间的位置和速度,每个行星代
- 06基于WOA-CNN-BiLSTM-Attention鲸鱼优化-卷积-双向长短时记忆-注意力机制的数据分类算法
机器不会学习CSJ
数据分类专栏cnn分类深度学习lstmmatlab启发式算法数据分析
基于WOA-CNN-BiLSTM-Attention鲸鱼优化-卷积-双向长短时记忆-注意力机制的数据分类算法鲸鱼智能优化基本原理鲸鱼智能优化算法(WhaleOptimizationAlgorithm,WOA)是一种基于自然界中的鲸鱼群体行为而提出的全局优化算法。该算法由莫扬(SeyedaliMirjalili)于2016年提出,其灵感来源于鲸鱼群体的捕猎行为和社交行为。在WOA算法中,每个解都被看
- 07基于WOA-CNN-BiLSTM-Attention鲸鱼优化-卷积-双向长短时记忆-注意力机制的时间序列预测算法
机器不会学习CSJ
时间序列预测cnn算法人工智能
文章目录鲸鱼优化算法CNN卷积神经网络BiLSTM双向长短期记忆网络Attention注意力机制WOA-CNN-BiLSTM-Attention鲸鱼优化-卷积-双向长短时记忆-注意力机制数据展示代码程序实验结果获取方式鲸鱼优化算法鲸鱼优化算法(WhaleOptimizationAlgorithm,WOA)是一种启发式优化算法,灵感来源于座头鲸的捕食行为。该算法最早由SeyedaliMirjalil
- 基于WOA优化CNN-LSTM-Attention的回归或时序算法,包含多种CNN-LSTM算法进行对比|Matlab
机器不会学习CSJ
算法深度学习
01基于WOA优化CNN-LSTM-Attention的回归或时序算法,包含多种CNN-LSTM算法进行对比|Matlab基础知识:基于WOA-CNN-LSTM-Attention的数据回归算法是一种利用深度学习技术来进行数据回归分析的方法。它结合了WOA(WhaleOptimizationAlgorithm)、CNN(ConvolutionalNeuralNetwork)、LSTM(LongSh
- 【PyTorch Ligntning】快速上手简明指南
何处闻韶
【PyTorchLightning】
目录一、简介二、安装PyTorchLightning三、定义LightningModule3.1SYSTEMVSMODEL3.2FORWARDvsTRAINING_STEP三、配置LightningTrainer四、基本特性4.1Manualvsautomaticoptimization4.1.1自动优化(Automaticoptimization)4.1.1手动优化(Manualoptimiza
- 阅读笔记(TMM2022)Image stitching with manifold optimization
J@u1
传统版图像拼接笔记图像拼接
ZhangL,HuangH.Imagestitchingwithmanifoldoptimization[J].IEEETransactionsonMultimedia,2022.
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文