Dropout解决过拟合问题

Dropout解决过拟合问题

晓雷 晓雷
6 个月前
这篇也属于 《神经网络与深度学习总结系列》,最近看论文对Dropout这个知识点有点疑惑,就先总结以下。(没有一些基础可能看不懂,以后还会继续按照正常进度写总结)

是什么?

假设我们要训练这样一个神经网络Dropout解决过拟合问题_第1张图片

输入是x输出是y,正常的流程是:我们首先把x通过网络前向传播然后后把误差反向传播以决定 如何更新参数让网络进行学习。使用dropout之后过程变成:

1. 首先随机(临时)删掉网络中一半的隐藏神经元,输入输出神经元保持不变(下图中虚线为部分临时被删除的神经元)
Dropout解决过拟合问题_第2张图片

2. 然后把输入x通过修改后的网络前向传播,然后把得到的损失结果通过修改的网络反向传播。一小批训练样本执行完这个过程后就按照随机梯度下降法更新(没有被删除的神经元)对应的参数(w,b)。

3. 然后继续重复这一过程:

  • 恢复被删掉的神经元(此时 被删除的神经元 保持原样,而没有被删除的神经元已经有所更新)
  • 从隐藏神经元中随机选择一个一半大小的子集 临时删除掉(备份被删除神经元的参数)。
  • 对一小批训练样本,先前向传播然后反向传播损失并根据随机梯度下降法更新参数(w,b) (没有被删除的那一部分参数得到更新,删除的神经元参数保持被删除前的结果)

不断重复这一过程。

dropout 的过程好像很奇怪,为什么说它可以解决过拟合呢?(正则化)

  • 取平均的作用: 先回到正常的模型(没有dropout),我们用相同的训练数据去训练5个不同的神经网络,一般会得到5个不同的结果,此时我们可以采用 “5个结果取均值”或者“多数取胜的投票策略”去决定最终结果。(例如 3个网络判断结果为数字9,那么很有可能真正的结果就是数字9,其它两个网络给出了错误结果)。这种“综合起来取平均”的策略通常可以有效防止过拟合问题。因为不同的网络可能产生不同的过拟合,取平均则有可能让一些“相反的”拟合互相抵消。dropout掉不同的隐藏神经元就类似在训练不同的网络(随机删掉一半隐藏神经元导致网络结构已经不同),整个dropout过程就相当于 对很多个不同的神经网络取平均。而不同的网络产生不同的过拟合,一些互为“反向”的拟合相互抵消就可以达到整体上减少过拟合。
  • 减少神经元之间复杂的共适应关系: 因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。(这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况)。 迫使网络去学习更加鲁棒的特征 (这些特征在其它的神经元的随机子集中也存在)。换句话说假如我们的神经网络是在做出某种预测,它不应该对一些特定的线索片段太过敏感,即使丢失特定的线索,它也应该可以从众多其它线索中学习一些共同的模式(鲁棒性)。(这个角度看 dropout就有点像L1,L2正则,减少权重使得网络对丢失特定神经元连接的鲁棒性提高)

(还有一个比较有意思的解释是,Dropout类似于性别在生物进化中的角色:物种为了生存往往会倾向于适应这种环境,环境突变则会导致物种难以做出及时反应,性别的出现可以繁衍出适应新环境的变种,有效的阻止过拟合,即避免环境改变时物种可能面临的灭绝。 当地球都是海洋时,人类是不是也进化出了再海里生活的能力呢?)

参考:

Neural networks and deep learning

Deep learning:四十一(Dropout简单理解)

你可能感兴趣的:(Dropout解决过拟合问题)