- bzoj 5168:[HAOI2014]贴海报 题解
Unlimied
分块bzoj---其他------OJ---题解bzojHAOI分块
5168:[HAOI2014]贴海报DescriptionBytetown城市要进行市长竞选,所有的选民可以畅所欲言地对竞选市长的候选人发表言论。为了统一管理,城市委员会为选民准备了一个张贴海报的electoral墙。张贴规则如下:1.electoral墙是一个长度为N个单位的长方形,每个单位记为一个格子;2.所有张贴的海报的高度必须与electoral墙的高度一致的;3.每张海报以“AB”表示,
- python画龙舟_BZOJ4891 TJOI2017龙舟(Polllard-Rho)
weixin_39688750
python画龙舟
对给定模数分解质因数后约分即可。依然常数巨大过不了。#include#include#include#include#include#includeusingnamespacestd;#definelllonglong#defineN10010chargetc(){charc=getchar();while((c'Z')&&(c'z')&&(c''))c=getchar();returnc;}ll
- 欧拉降幂(JAVA)蓝桥杯乘积幂次
俺不是西瓜太郎´•ﻌ•`
蓝桥杯java蓝桥杯开发语言
这个题可以使用欧拉降幂,1000000007是质数,所以欧拉函数值为1000000006.importjava.util.Scanner;//1:无需package//2:类名必须Main,不可修改publicclassMain{publicstaticvoidmain(String[]args){Scannerscanner=newScanner(System.in);//输入longn=sca
- 初等数论 课堂笔记 第三章 -- 欧拉函数一节的若干练习
此账号已停更
初等数论数学数论
练习计算φ(60)\varphi\left(60\right)φ(60)。解 将606060写成标准分解式60=22×3×560={{2}^{2}}\times3\times560=22×3×5法一(计算过程中出现分式)φ(60)=60×(1−12)(1−13)(1−15)=60×12×23×45=16\varphi\left(60\right)=60\times\left(1-\frac{1}
- 互质数的个数(快速幂+欧拉函数)
L_59
算法java
题目描述给定a,b,求1≤x<中有多少个x与互质。由于答案可能很大,你只需要输出答案对998244353取模的结果。输入格式输入一行包含两个整数分别表示a,b,用一个空格分隔。输出格式输出一行包含一个整数表示答案。样例输入25样例输出16提示对于30%的评测用例,≤106;对于70%的评测用例,a≤10^6,b≤10^9;对于所有评测用例,1≤a≤10^9,1≤b≤10^18。思路:为了解决这个问
- 【BZOJ】1419 Red is good
weixin_34129696
【算法】期望DP【题解】其实把状态表示出来就是很简单的期望DP。f[i][j]表示i张红牌,j张黑牌的期望。i=0时,f[0][j]=0。j=0时,f[i][0]=i。f[i][j]=max(0,i/(i+j)*(f[i-1][j]+1)+j/(i+j)*(f[i][j-1]-1))。直接使用期望定义式E(X)=Σpi*xi不四舍五入就是在后一位-5。空间限制必须用递推+滚动数组。#include
- 【BZOJ】1419 Red is Good
Pure_W
BZOJ
大意:桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元。可以随时停止翻牌,在最优策略下平均能得到多少钱直接期望DPf[i][j]表示开一局i红j黑的游戏的期望收益,然后f[i][j]可以由f[i-1][j]和f[i][j-1]转移要滚动#include#include#definecintconstint&usingnamespaces
- BZOJ 1419: Red is good(期望DP)
AbEver
BZOJ期望&概率DP&记忆化搜索
题目描述权限传送门题解比较水的期望DP,但也让我悟到了一点关于期望的东西。题目描述得不可描述,看起来逼格很高。但平均就是期望,关键是最优策略这点。根据我幼稚的理解,期望是均值没错,但期望之所以叫期望是因为它在预知未来,当前这个状态期望的得分就是作出决策后未来能得到分数的均值。所以或许这就是期望DP的状态要倒过来推的原因吧。考虑f[i][j]为剩下i张红牌j张黑牌的在最优策略下的期望。根据我脚推的式
- BZOJ 1639: [Usaco2007 Mar]Monthly Expense 月度开支【二分+贪心】
weixin_30367543
1639:[Usaco2007Mar]MonthlyExpense月度开支【题目描述】传送门【题解】二分答案,然后贪心check就可以了。代码如下#includeusingnamespacestd;intn,m,Ans,a[100005];boolcheck(intx){intSum=0,Now=1;for(inti=1;ix)return0;if(Sum+a[i]>1;L>1)if(check(
- BZOJ 1639: [Usaco2007 Mar]Monthly Expense 月度开支
AC_IS_DELIGHTFUL
BZOJsilverUSACO银组题二分答案
1639:[Usaco2007Mar]MonthlyExpense月度开支TimeLimit:5SecMemoryLimit:64MBSubmit:1052Solved:519[Submit][Status][Discuss]DescriptionFarmerJohn是一个令人惊讶的会计学天才,他已经明白了他可能会花光他的钱,这些钱本来是要维持农场每个月的正常运转的。他已经计算了他以后N(1#in
- RSA加密算法理解
邪神与厨二病
杂项笔记c++数学算法RSA安全
RSA算法流程选择大素数p,qp,qp,q,通常大于1010010^{100}10100次方计算n=p∗q{\color{red}n}=p*qn=p∗q。计算nnn的欧拉函数φ(n)\varphi(n)φ(n)选择d{\color{red}d}d,使得ddd与φ(n)\varphi(n)φ(n)互质计算ddd对于φ(n)\varphi(n)φ(n)的模反元素e\color{violet}ee(即模
- 数据结构与算法-数学-基础数学算法(筛质数,最大公约数,最小公倍数,质因数算法,快速幂,乘法逆元,欧拉函数)
一个人在码代码的章鱼
#数学算法学习算法c++数据结构
一:筛质数:1-埃氏筛法该算法核心是从2开始,把每个质数的倍数标记为合数,时间复杂度约为O(nloglogn)。#include#includeusingnamespacestd;constintN=1000010;boolst[N];//标记数组,true表示是合数,false表示是质数voidget_primes(intn){for(inti=2;i>n;get_primes(n);for(i
- 公钥算法的基本数论知识——欧几里得算法、扩展的欧几里得算法、 欧拉函数、费马小定理、欧拉定理
南隅笙箫
算法
公钥算法的基本数论知识包含内容欧几里得算法、扩展的欧几里得算法、欧拉函数、费马小定理、欧拉定理http://www.huangjihao.com/index.php/archives/625一、欧几里得算法(EuclideanAlgorithm)1、简介欧几里德算法又称辗转相除法,是指用于计算两个正整数a,b的最大公约数。应用领域有数学和计算机两个方面。计算公式(,)=(,)二、例子0=973,1
- RSA非对称加密算法深度解析与技术实现指南
安全
一、密码学基础与RSA背景RSA算法(Rivest-Shamir-Adleman)是首个实用的非对称加密体系,由MIT学者于1977年提出。其数学基础建立在大数分解难题和欧拉定理之上,核心思想是利用模指数运算构造单向陷门函数。数学预备知识:欧拉函数φ(n):小于n且与n互质的正整数数量贝祖定理:gcd(a,b)=ax+by的解存在性模逆元:a·a⁻¹≡1modn的解存在条件费马小定理:a^(p-1
- RSA非对称加密算法深度解析与技术实现指南
网安秘谈
算法
一、密码学基础与RSA背景RSA算法(Rivest-Shamir-Adleman)是首个实用的非对称加密体系,由MIT学者于1977年提出。其数学基础建立在大数分解难题和欧拉定理之上,核心思想是利用模指数运算构造单向陷门函数。数学预备知识:欧拉函数φ(n):小于n且与n互质的正整数数量贝祖定理:gcd(a,b)=ax+by的解存在性模逆元:a·a⁻¹≡1modn的解存在条件费马小定理:a^(p-1
- 基础算法--欧拉函数
不会搬砖的淡水鱼
基础算法算法java数据结构
欧拉函数(Euler’stotientfunction),也称为费马函数,是一个与正整数相关的数论函数,用符号φ(n)表示。欧拉函数φ(n)定义为小于或等于n的正整数中与n互质的数的个数。RSA加密算法(Rivest-Shamir-Adleman)就是通过欧拉函数进行公钥加密。具体而言,对于给定的正整数n,欧拉函数φ(n)计算满足以下条件的k的个数:1≤k≤n,且k与n互质(即k和n的最大公约数为
- 蓝桥杯 互质数的个数
养一只Trapped_beast
蓝桥杯职场和发展
题目链接思路知道欧拉函数的性质就会做了代码#欧拉函数defeuler(n):res=n#找所有的质数因子foriinrange(2,int(n**0.5)+1):ifn%i==0:#去除因子的k次方whilen%i==0:n//=ires=res//i*(i-1)#先除再乘,结果肯定变小,肯定不会大过mod#没有质数因子,即n本身就是质数(易忘点)ifn>1:res=res//n*(n-1)ret
- BZOJ3843: ZCC loves Army
L_0_Forever_LF
BZOJ多校LCTsplay
把树转成左儿子右兄弟的那种二叉树的形式发现一个点能且仅能给他的子树传递order,询问3就变成了询问一个点到根有多少个点对于传递message,可以给每个点定一个编号0的虚儿子,给他赋权1,就变成了询问两点间路径的权值和,注意要特判一个点是另一个点的祖先的情况,bzoj上的数据有误,不判这个才能过,hdu上的数据是对的可以去那里交对于操作1,把某个人的一段儿子截下来,可以用n棵splay处理每个人
- BZOJ3850: ZCC Loves Codefires
L_0_Forever_LF
BZOJ多校贪心数学
考虑最优的顺序满足什么性质设两个部件A,B顺序为A在B前面,费用分别是a,b,耗时ta,tb,中间部分费用和S,耗时和T如果最优顺序中A在B前面(A,B前后的部件显然不需要考虑),则有ata+Sta+b(ta+T+tb)ST>btb于是Sta#include#include#include#include#include#include#include#include#include#includ
- RSA算法
cliff,
密码学密码学安全学习笔记
文章目录1.前言2.基本概要2.1欧拉函数2.2模反元素2.3RSA3.加密过程3.1参数选择3.2流程3.3习题4.数字签名4.1签名算法4.2攻击4.2.1一般攻击4.2.2利用已有的签名进行攻击4.2.3攻击签名获得明文4.3应用1.前言学习视频:【RSA加密算法】|RSA加密过程详解|公钥加密|密码学|信息安全|_哔哩哔哩_bilibili2.基本概要2.1欧拉函数具体知识点学习《信息安全
- [BZOJ1093][ZJOI2007]最大半连通子图(Tarjan+拓扑排序+DP)
xyz32768
BZOJUOJLOJ拓扑排序Tarjan
首先得到,一个强连通分量一定是半连通的。把强连通分量缩点之后,可以得到一个拓扑图。下面,sze[u]为新图中点u所对应强连通分量的大小。缩点之后,就很容易得出,一个半连通子图一定是拓扑图中的一条链,半连通子图的大小为这条链上所有点的sze之和。所以,现在就是要求这个拓扑图的最长链(sze之和最大)。考虑按照拓扑排序DP,f[u]表示以u为终点的最长链长度:1、对于点u,如果点u的入度为0,则f[u
- bzoj 1093: [ZJOI2007]最大半连通子图【tarjan+拓扑排序+dp】
weixin_30951743
先tarjan缩成DAG,然后答案就变成了最长链,dp的同时计数即可就是题面太唬人了,没反应过来#include#include#include#include#includeusingnamespacestd;constintN=100005;intn,m,mod,h[N],cnt,dfn[N],low[N],tot,bl[N],col,s[N],top,si[N],d[N],f[N],g[N]
- 欧拉定理
GocNeverGiveUp
数论基础
今天上午近代史和英语又看了看数论,看到了这个费马-欧拉定理,之前还真没见过,只是知道欧拉函数打表欧拉函数φ欧拉定理是用来阐述素数模下,指数同余的性质。欧拉定理:对于正整数N,代表小于等于N的与N互质的数的个数,记作φ(N)例如φ(8)=4,因为与8互质且小于等于8的正整数有4个,它们是:1,3,5,7欧拉定理还有几个引理,具体如下:①:如果n为某一个素数p,则φ(p)=p-1;①很好证明:因为素数
- 【竞赛专用方法总结】蓝桥杯-ACM比赛参考
JokerSZ.
蓝桥杯算法数据结构竞赛编程
基础部分数位拆分进位模拟最大公约、最小公倍数、质数、素数试除法判定质数——模板题AcWing866.试除法判定质数boolis_prime(intx){if(x1)coutget_divisors(intx){vectorres;for(inti=1;i1)res=res/x*(x-1);returnres;}筛法求欧拉函数——模板题AcWing874.筛法求欧拉函数intprimes[N],cn
- BZOJ 1726: [Usaco2006 Nov]Roadblocks第二短路 ——Dijkstra+玄学
通信男神杨丽斌
瞎写图论
这个题玄学冲过,规定每个点访问次数不能超过50次,然后找优先队列中第二次到达终点t的状态返回就ok记录一下,怕忘了#include#include#include#include#include#include#includeusingnamespacestd;constintmaxn=5010;constintINF=0x3f3f3f3f;structHeapNode{intd,u;HeapNo
- 2016年2月小记录
weixin_30485799
开发工具
2.2发现自己bzoj第一版屯了不少题,就先A几道吧。bzoj1016:[JSOI2008]最小生成树计数,就是kruskal求出最小生成树后暴力一下就行了,其实不知道为什么可以过,反正就是可以过。bzoj1007:[HNOI2008]水平可见直线这题的结论太强了,按斜率排序,维护一个栈,判断交点就行啦,然后被卡精度了,不过这题idea特别好bzoj1011:[HNOI2008]遥远的行星这题就是
- poj 1142 Smith Numbers(数论:欧拉函数变形)
殷华
数学/数论
给定一个数n找出大于n的最小smith数smith数定义如下:一个数n为smith数当且仅当它的所有质因子各位数之和等于n的所有位数之和且n不是素数那么给定一个n,我们就可以每次+1判断是否为smith数这道题唯一的难点就在于找到一个数的所有素数因子套用欧拉函数变形即可375ms代码如下:#include#include#defineLLlonglongLLn;intget_ans(LLn){in
- [bzoj1139]Wie
weixin_30437481
1139:[POI2009]WieTimeLimit:10SecMemoryLimit:259MBDescriptionByteasarhasbecomeahexer-aconquerorofmonsters.CurrentlyheistoreturntohishometownByteburg.Thewayhome,alas,leadsthroughalandfullofbeasts.Fortun
- BZOJ 五月胡乱补题
nike0good
其他屯题bzoj博客补档
旧博客搬运部分格式还没来得及改T_T【BZOJ4806:炮】同BZOJ1801【BZOJ3242:[Noi2013]快餐店】树形dp,要么最远点在同一颗树上(dp),要么在不同树上,此时答案=去掉任何一条边后形成的树的答案的最小值,我们枚举去掉的那条边。由于答案=s[i]-s[j]+dis[i]+dis[j],i,j可以分开考虑,也可以用线段树解决。【BZOJ4878:[Lydsy2017年5月月
- 蓝桥杯第十四届C++C组
bug~bug~
蓝桥杯蓝桥杯c++c语言
目录三国游戏填充翻转【单调队列优化DP】子矩阵【快速幂、欧拉函数】互质数的个数【tire树】异或和之差【质因数分解】公因数匹配子树的大小三国游戏题目描述小蓝正在玩一款游戏。游戏中魏蜀吴三个国家各自拥有一定数量的士兵X,Y,Z(一开始可以认为都为0)。游戏有n个可能会发生的事件,每个事件之间相互独立且最多只会发生一次,当第i个事件发生时会分别让X,Y,Z增加Ai,Bi,Ci。当游戏结束时(所有事件的
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,