离散傅里叶变换的基本概念

离散傅里叶变换(DFT),是傅里叶变换 在时域和频域上都呈现离散的形式,将时域信号的采样变换为在离散时间傅里叶变换 (DTFT)频域的采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值 序列。即使对有限长的离散信号作DFT,也应当将其看作经过周期延拓 成为周期信号再作变换。在实际应用中通常采用快速傅里叶变换 以高效计算DFT。

离散傅里叶变换物理意义

(1)物理意义
设x(n)是长度为N的有限长序列,则其傅里叶变换,Z变换与离散傅里叶变换分别用以下三个关系式表示
X(e^jω)= ∑n={0,N-1}x(n) e^jωn
X(z)= ∑n={0,N-1}x(n)z^-n
X(k)= ∑n={0,N-1}x(n) e^-j2π/Nnk
单位圆上的Z变换就是序列的傅里叶变换
离散傅里叶变换是x(n)的频谱X(ejω)在[0,2π]上的N点等间隔采样,也就是对序列频谱的离散化,这就是DFT的物理意义

离散傅里叶变换基本性质

1.线性性质
如果X1(n)和X2(N)是两个有限长序列,长度分别为N1和N2,且Y(N)=AX1(N)+BX2(N)
式中A,B为常数,取N=max[N1,N2],则Y(N)地N点DFT为
Y(K)=DFT[Y(N)]=AX1(K)+BX2(K), 0≤K≤N-1;
2.循环移位特性
设X(N)为有限长序列,长度为N,则X(N)地循环移位定义为
Y(N)=X((N+M))下标nR(N)
式中表明将X(N)以N为周期进行周期拓延得到新序列X'(N)=X((N))下标n,再将X'(N)左移M位,最后取主值序列得到循环移位序列Y(N)

离散傅里叶变换隐含的周期性

DFT的一个重要特点就是隐含的周期性,从表面上看,离散傅里叶变换在时域和频域都是非周期的,有限长的序列,但实质上DFT是从DFS引申出来的,它们的本质是一致的,因此DTS的周期性决定DFT具有隐含的周期性。可以从以下三个不同的角度去理解这种隐含的周期性
(1)从序列DFT与序列FT之间的关系考虑X(k)是对频谱X(ejω)在[0,2π]上的N点等间隔采样,当不限定k的取值范围在[0,N-1]时,那么k的取值就在[0,2π]以外,从而形成了对频谱X(ejω)的等间隔采样。由于X(ejω)是周期的,这种采样就必然形成一个周期序列
(2)从DFT与DFS之间的关系考虑。X(k)= ∑n={0,N-1}x(n) WNexp^nk,当不限定N时,具有周期性
(3)从WN来考虑,当不限定N时,具有周期性


你可能感兴趣的:(数字信号处理)