- 阿里云力夺 FewCLUE 榜首!知识融入预训练+小样本学习的实战解析
阿里云技术
自然语言处理机器学习
一概述7月8日,中文语言理解权威评测基准CLUE公开了中文小样本学习评测榜单最新结果,阿里云计算平台PAI团队携手达摩院智能对话与服务技术团队,在大模型和无参数限制模型双赛道总成绩第一名,决赛答辩总成绩第一名。中文语言理解权威评测基准CLUE自成立以来发布了多项NLP评测基准,包括分类榜单,阅读理解榜单和自然语言推断榜单等,在学术界、工业界产生了深远影响。其中,FewCLUE是CLUE最新推出的一
- 论文阅读笔记《SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning》
深视
论文阅读笔记#小样本学习深度学习小样本学习
小样本学习&元学习经典论文整理||持续更新核心思想 本文提出一种基于最近邻方法的小样本学习算法(SimpleShot),作者指出目前大量的小样本学习算法都采用了元学习的方案,而作者却发现使用简单的特征提取器+最近邻分类器的方法就能实现非常优异的小样本分类效果。本文首先用特征提取网络fθf_{\theta}fθ+线性分类器在一个基础数据集上对网络进行训练,将训练得到的特征提取网络增加一个简单的特征
- SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning 论文笔记
头柱碳只狼
小样本学习
前言目前大多数小样本学习器首先使用一个卷积网络提取图像特征,然后将元学习方法与最近邻分类器结合起来,以进行图像识别。本文探讨了这样一种可能性,即在不使用元学习方法,而仅使用最近邻分类器的情况下,能否很好地处理小样本学习问题。本文发现,对图像特征进行简单的特征转换,然后再进行最近邻分类,也可以产生很好的小样本学习结果。比如,使用DenseNet特征的最近邻分类器,在结合均值相减(meansubtra
- 每周编辑精选|FewJoint 基准数据集上线、科技部监督司发布 AI 新规
人工智能资讯数据集
小样本学习(Few-shotLearning)是指像人类一样能够通过很少的样本来学习掌握新任务。这一领域已经成为机器学习社区的热点,并被认为是推动机器智能接近人类智能的关键方向之一。哈工大推出了FewJoint基准数据集,为NLP小样本评测提供了公共的评价基准。该数据集已在hyper.ai上线,hyper.ai还有更多供中文大模型训练的NLP数据集可以下载哦~一起来看看吧!1月29日-2月2日,h
- 小样本学习系列工作(持续更新)
MingchenS
计算机视觉学习人工智能深度学习计算机视觉python
小样本学习系列工作有关小样本学习的各类文章通常会将其方法分成几个大类:基于度量学习的小样本方法、基于数据增强的小样本学习方法和基于模型初始化的小样本学习方法。我觉得这样分类并不好,因为三种方法之间并不是各自独立存在的,大多数情况下都是有交集的,比如一篇工作可能既使用了元学习的训练策略,同时又在度量方法上进行了创新。因此在梳理工作的时候,还是按照论文的顺序来梳理比较好,每篇工作都有他的特点,其思考的
- 小样本学习
Ada's
系统科学神经科学认知科学通用人工智能基础(语音文本图像等)
github.com/blue-blue272/fewshot-CAN从注意力方面的进展来看自然语言已经和图像在算法底层通用以下方法可能对小样本有帮助:
- 科大讯飞将于1月30日发布星火大模型 V3.5,基于全国产化算力底座训练
喜好儿aigc
人工智能科技aigcai
科大讯飞即将发布全新AI大模型——星火认知大模型V3.5,该模型将于14:00正式发布。据透露,相比于去年10月24日发布的V3.0版本,V3.5在逻辑推理、文本生成、数学答题及小样本学习能力上均实现了显著提升。科大讯飞官网链接:讯飞星火认知大模型-AI大语言模型-星火大模型-科大讯飞AI工具专区:+AI工具-喜好儿aigc科大讯飞股份有限公司是中国领先的人工智能企业,自1999年成立以来,专注于
- 【机器学习一百问 01】 迁移学习和小样本学习的本质不同是什么?
坚果仙人
机器学习机器学习迁移学习学习
注:这些只是个人理解,如有质疑可提问讨论!迁移学习和小样本学习都是机器学习领域的重要分支,它们虽然有一些交集,但在目的和核心方法上存在本质的不同:目的和焦点:迁移学习:其主要目的是利用在一个或多个源任务上获得的知识,来改善或加速对新任务的学习过程。迁移学习的核心在于“知识转移”,它不特定于数据量的多少。小样本学习:其核心挑战是如何在非常少量的数据(即小样本)上实现有效的学习。小样本学习特别关注于如
- CVPR19-Few-shot
vieo
CVPR19-Few-shot本文主要总结了CVPR2019的few-shot的文章,主要从motivation,具体方法上进行总结。小样本学习:训练中可以使用各类样本,但是测试时,面对新的类别(通常为5类),每类只有极少量的标注样本,以及来自相同类别的查询图像。基于度量的方法(在原型网络,图卷积的基础上改进)RevisitingLocalDescriptorbasedImage-to-Class
- 小样本学习(FSL)和元学习、数据增强和对比学习各自的概念和相互关系
Chowley
机器学习深度学习自然语言处理lstmchatgpt
前言最近一周在做简历和投递,想找个暑假的实习岗,有几个过了初筛,今天围绕我的简历讲解一下里面的科研经历和方向推荐,也是给自己做一个总结。去年疫情开始,取消线下课程和考试,我闲着没事,就搞起了研究,很巧的是和ChatGPT时间重叠了,当时因为网上全是防治疾病的,我也就错过了ChatGPT的黄金期,不然没准就是搞NLP了,今天我也请GPT4.0一同创作,看能不能给这篇博客带来不一样的火花。小样本学习F
- 小样本学习综述
雪夜的星_e40c
小样本学习(Few-shotLearning)综述摘要:人类非常擅长通过极少量的样本识别一个新物体,比如小孩子只需要书中的一些图片就可以认识什么是“斑马”,什么是“犀牛”。在人类的快速学习能力的启发下,研究人员希望机器学习模型在学习了一定类别的大量数据后,...分类非常常见,但如果每个类只有几个标注样本,怎么办呢?笔者所在的阿里巴巴小蜜北京团队就面临这个挑战。我们打造了一个智能对话开发平台--Di
- 小样本学习介绍(超详细)
s_m_c
计算机视觉学习人工智能深度学习计算机视觉
小样本学习介绍本文首先介绍了什么是小样本学习,其次介绍了为什么小样本学习的很多文章都采用元学习的方法。目的是通过通俗的解释更加清楚的介绍小样本学习是什么,适合初学者的入门。当然,以下更多的是自己的思考,欢迎交流。什么是小样本学习?当我开始接触“小样本”这个术语的时候,给我的第一感觉就是他的数据集很小(这也是我入坑小样本学习最开始的原因,以为炼丹不需要太久),相信很多人有个同样的感觉,但是事实上并不
- 【深度学习:Few-shot learning】理解深入小样本学习中的孪生网络
jcfszxc
深度学习知识库深度学习学习人工智能
【深度学习:Few-shotlearning】理解深入小样本学习中的孪生网络深入理解孪生网络:架构、应用与未来展望小样本学习的诞生元学习小样本学习孪生网络的基本概念孪生网络的细节TripletLoss架构特点关键组件训练过程主要应用领域未来展望示例图片结论备注:本篇博客中有部分图片由GPT生成深入理解孪生网络:架构、应用与未来展望在人工智能和机器学习的领域中,**孪生网络(SiameseNetwo
- 【论文阅读笔记】One-Shot Relational Learning for Knowledge Graphs - EMNLP 2018
卷卷0v0
论文阅读知识图谱论文阅读知识图谱神经网络
知识图谱-->知识补全-->长尾问题-->元关系学习基于度量的方法(本文)基于优化的方法文章目录Abstract1Introduction2RelatedWork关系学习的嵌入模型小样本学习3Background3.1问题定义3.2One-Shot学习设置4Model4.1邻居编码器4.2匹配处理器4.3损失函数和训练5Experiments5.1数据集5.2实施细节5.3结果关于模型选择的备注5
- 小样本学习idea(不断更新)
s_m_c
学习
在此整理并记录自己的思考过程,其中不乏有一些尚未成熟或者尚未实现的idea,也有一些idea实现之后没有效果或者正在实现,当然也有部分idea已写成论文正在投稿,都是自己的一些碎碎念念的思考,欢迎交流。研一上学期9.18现有思路:1.用pretrain好的MAE,采用不同的遮挡方式(或者遮挡比例,固定或者不固定,随机或者block-wise),生成不同遮挡方式下的特征,相当于单张图片的样本扩充。2
- 论文解读:Exploring Complementary Strengths of Invariant and Equivariant Representations
十有久诚
深度学习人工智能
小样本学习论文解读:ExploringComplementaryStrengthsofInvariantandEquivariantRepresentationsforFew-ShotLearning摘要teach:这篇文章尽管标题带小样本学习,但是并没有设计一套小样本学习的算法,而是用一种数据增强或者数据增广的方式生成更多的样本。通过样本之间的训练或者学习来去提升这个模型的泛化能力。用积累的数据
- CVPR 2023 精选论文学习笔记:Meta-Tuning Loss Functions and Data Augmentation for Few-Shot Object Detection
结构化文摘
学习笔记目标检测人工智能计算机视觉深度学习
我们给出以下四个分类标准:1.学习方法元学习:元学习是一种学习范式,旨在教模型如何快速学习新任务。在小样本学习的背景下,元学习算法在各种任务上进行训练,每个任务只有少数示例。这允许模型学习如何调整其学习过程以适应新任务,即使这些任务与它以前见过的任务非常不同。数据增强:数据增强是一种通过对现有数据应用转换来生成新训练数据的技术。这对于小样本学习来说可以是一种有用的技术,因为它可以帮助增加可用训练数
- 基于小样本学习的SAR图像识别
吧啦_吧啦
姓名:刘倩学号:19021210889【嵌牛导读】:对于SAR图像目标识别,目前研究人员是基于大样本进行建模和研究,而对于小样本条件下的SAR图像目标识别,只有少部分人开展了研究,并且与大样本数据相比较,其识别准确率较低。针对这一问题提出了一种新的算法——卷积自编码器算法。该方法能自动识别小样本图像中的有效特征,提高识别准确率。【嵌牛鼻子】:小样本学习,深度学习,卷积神经网络,自编码器【嵌牛提问】
- 分布式系统-拜占庭将军问题-通信协议
TBYourHero
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录AAAI2017-2019CVPR2017-2019ECCV2018ICCV2017-2019ICLR2017-2019NIPS2017-2019什么是拜占庭将军问题?在很久很久以前,拜占庭是东罗马帝国的首都。那个时候罗马帝国国土辽阔,为了防御目的,因此每个军队都分隔很远,将军与将军之间只能靠信使传递消息。在打仗的时候,
- 目标检测||速览
TBYourHero
深度学习objectdetection
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录AAAI2017-2019CVPR2017-2019ECCV2018ICCV2017-2019ICLR2017-2019NIPS2017-2019目录一:基础概念二:两种方法2.1两阶段法R-CNNSPPNetFastR-CNNPFNMaskR-CNN2.2一阶段法YOLOSSDDSSDRetinaNet总结一:基础概念
- 小样本学习在图像识别中的挑战与突破
matlabgoodboy
学习
小样本学习(Few-ShotLearning)是一种机器学习方法,旨在从很少的样本中学习并做出准确的预测。在图像识别领域,小样本学习面临一些挑战,同时也涌现出一些突破性的解决方法。挑战:缺乏数据:小样本学习的主要挑战之一是样本数量有限,这使得传统深度学习模型难以学习足够的特征。过拟合:由于样本少,模型容易过拟合,即在训练样本上表现良好,但在未见过的数据上表现不佳。领域差异:在小样本学习中,模型需要
- FusionDiff:第一个基于扩散模型实现的多聚焦图像融合的论文
ctrl A_ctrl C_ctrl V
#多聚焦图像融合算法深度学习计算机视觉人工智能
文章目录1.论文介绍2.研究动机3.模型结构3.1网络架构3.2前向扩散过程3.3逆向扩散过程3.4训练和推理过程4.小样本学习4.实验结果1.论文介绍题目:FusionDiff:Multi-focusimagefusionusingdenoisingdiffusionprobabilisticmodels作者:MiningLi,中国科学技术大学录用期刊:ExpertSystemswithAppl
- 从技术到科学,中国AI向何处去?
人工智能学家
大数据编程语言机器学习人工智能深度学习
来源:科学网编辑:宗华排版:华园作者:金榕(阿里巴巴达摩院副院长、原密歇根州立大学终身教授)●AI时代序幕刚拉开,AI目前还处于初级阶段,犹如法拉第刚刚发现了交流电,还未能从技术上升为科学。●以深度学习为代表的AI研究这几年取得了诸多令人赞叹的进步,但部分也是运气的结果,其真正原理迄今无人知晓。●在遇到瓶颈后,深度学习有三个可能突破方向:深度学习的根本理解、自监督学习和小样本学习、知识与数据的有机
- SVM实现小尺寸图片分类
余生的观澜
计算机视觉KingofCVpython技术栈支持向量机机器学习分类
问题背景在工业识别的场景中,经常会遇到误判与误识别,所以最后输出的结果,需要再通过N分类算法去过滤一遍,确保识别到的物体,是我们想要的,能实现这个方案有很多,传统机器学习与深度神经网络都可以做到,传统机器学习,比如SVM,决策树,深度神经网络,从最简单的卷积到resnet,小样本学习,迁移学习,都可以实现。本文通过SVM对算法进行封装,实现一个图片的分类。参考资料https://blog.csdn
- 《Learning to Compare: Relation Network for Few-Shot Learning》
Lucifer_75d2
一、Introduction深度学习模型在视觉识别任务中取得了巨大的成功。然而,这些监督学习模型需要大量的标记数据和许多迭代来训练它们大量的参数。由于标注成本的原因,这严重限制了它们对新类的可拓展性,但从根本上限制了它们对新出现的或是很少出现的类的适用性。在这些类别中,大量注释的图像可能根本不存在。相比之下,人类在几乎没有直接监督或根本没有监督的情况下却非常擅长识别物体,例如小样本学习或零样本学习
- GPT系列发展及技术:GPT1到GPT3的发展,InstructGPT的RLHF流程,GPT4
榴莲_
gptchatgpttransformer语言模型自然语言处理
目录GPT系列前言Transformertransformer的代码实现Transformer位置编码具体结构BERT--EncoderGPT--Decoder微调方法--fine-tuningVSPromptingGPT1-GPT3GPT1预训练+微调1、无监督预训练2、有监督微调对子任务构造不同数据输入和bert对比GPT2-语言模型是多任务的学习器小样本学习GPT3动机数据集Instruct
- Optimization as a model for few-shot learning||论文阅读
TBYourHero
深度学习paperreading小样本学习
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录AAAI2017-2019CVPR2017-2019ECCV2018ICCV2017-2019ICLR2017-2019NIPS2017-2019介绍:对Few-shotlearning中的优化进行建模本文通过将SGD更新规则解释为具有可训练参数的门控递归模型,描述了一种新的元学习方法。这个想法对于迁移学习相关的研究来说
- 小样本学习的k-way n-shot
TBYourHero
深度学习
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录AAAI2017-2019CVPR2017-2019ECCV2018ICCV2017-2019ICLR2017-2019NIPS2017-2019如下图简单理解一下小样本的训练方式:Training(训练模型)SampleSetQuerySetTesting(测试模型)SupportSetTestSet(无label)训
- 贝叶斯网络
TBYourHero
math
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录AAAI2017-2019CVPR2017-2019ECCV2018ICCV2017-2019ICLR2017-2019NIPS2017-2019作者:Bioquan链接:https://www.jianshu.com/p/9d3a91cb2117来源:简书概率论只不过是把常识用数学公式表达了出来。——拉普拉斯记得读本科
- 小样本学习论文总结(few-shot learning)
亨利庞加莱
2015Koch,Gregory,RichardZemel,andRuslanSalakhutdinov."Siameseneuralnetworksforone-shotimagerecognition."ICMLDeepLearningWorkshop.Vol.2.2015.[paper]2016Ravi,Sachin,andHugoLarochelle."Optimizationasamod
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found