大数据基础知识集合

一、大数据的基本概念

大数据,指的是传统数据处理应用软件不足以处理它们的大或复杂的数据集的术语。简单说就是将大量的数据通过类比和分类,分为众多较小型数据,将各个小型数据集合并后进行分析便可得出许多额外的信息和数据关系性,以此用来察觉商业趋势、判定研究质量、避免疾病扩散、打击犯罪或测定即时交通路况等。

二、数据仓库

数据仓库,是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化、(Time Variant)的数据集合,用于支持管理决策。

特点:

1、面向主题

  操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织的。

2、集成的

  数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。

3、相对稳定的

  数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。

4、反映历史变化

  数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。

三、数据处理的方式

当今的数据处理大致可以分成两大类:联机事务处理OLTP(on-line transaction processing)、联机分析处理OLAP(On-Line Analytical Processing)。OLTP是传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。OLAP是数据仓库系统的主要应用,支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果.

1、OLTP:

也称为面向交易的处理系统,其基本特征是顾客的原始数据可以立即传送到计算中心进行处理,并在很短的时间内给出处理结果。
这样做的最大优点是可以即时地处理输入的数据,及时地回答。也称为实时系统(Real time System)。衡量联机事务处理系统的一个重要性能指标是系统性能,具体体现为实时响应时间(Response Time),即用户在终端上送入数据之后,到计算机对这个请求给出答复所需要的时间。OLTP是由数据库引擎负责完成的。
OLTP 数据库旨在使事务应用程序仅写入所需的数据,以便尽快处理单个事务。

2、OLAP:

随着数据库技术的发展和应用,数据库存储的数据量从20世纪80年代的兆(M)字节及千兆(G)字节过渡到现在的兆兆(T)字节和千兆兆(P)字节,同时,用户的查询需求也越来越复杂,涉及的已不仅是查询或操纵一张关系表中的一条或几条记录,而且要对多张表中千万条记录的数据进行数据分析和信息综合,关系数据库系统已不能全部满足这一要求。在国外,不少软件厂商采取了发展其前端产品来弥补关系数据库管理系统支持的不足,力图统一分散的公共应用逻辑,在短时间内响应非数据处理专业人员的复杂查询要求。
联机分析处理(OLAP)系统是数据仓库系统最主要的应用,专门设计用于支持复杂的分析操作,侧重对决策人员和高层管理人员的决策支持,可以根据分析人员的要求快速、灵活地进行大数据量的复杂查询处理,并且以一种直观而易懂的形式将查询结果提供给决策人员,以便他们准确掌握企业(公司)的经营状况,了解对象的需求,制定正确的方案。

四、分析和挖掘

1、分析(ETL)

ETL(extract提取、transform转换、load加载)。ETL负责将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后,进行清洗、转换、集成,最后加载到数据仓库数据集市中,成为联机分析处理数据挖掘提供决策支持的数据

        ETL是构建数据仓库的重要的一环,用户从数据源抽取所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型将数据加载到数据仓库中。其定义域来源也不下于十几年,技术发展也应相当成熟。可乍眼一看,似乎并没有什么技术可言,也没有什么深奥之处,但在实际的项目中,却常常在这个环节上耗费太多的人力,而在后期的维护上,往往更费脑筋。导致上面的原因,往往是在项目初期没有正确的估计ETL的工作,没有认真的考虑其与工具支撑有很大的关系。

2、挖掘(DM)

数据挖掘(DataMining),又称为数据库中的知识发现(Knowledge Discoveryin Database,KDD),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程,简单的说,数据挖掘就是从大量数据中提取或“挖掘”知识。

五、Hadoop

Apache Hadoop是一款支持数据密集型分布式应用程序并以Apache 2.0许可协议发布的开源软件框架。它支持在商品硬件构建的大型集群上运行的应用程序。Hadoop是根据谷歌公司发表的MapReduce和Google文件系统的论文自行实现而成。所有的Hadoop模块都有一个基本假设,即硬件故障是常见情况,应该由框架自动处理。

Hadoop框架透明地为应用提供可靠性和数据移动。它实现了名为MapReduce的编程范式:应用程序被分区成许多小部分,而每个部分都能在集群中的任意节点上运行或重新运行。此外,Hadoop还提供了分布式文件系统,用以存储所有计算节点的数据,这为整个集群带来了非常高的带宽。MapReduce和分布式文件系统的设计,使得整个框架能够自动处理节点故障。它使应用程序与成千上万的独立计算的电脑和PB级的数据连接起来。现在普遍认为整个Apache Hadoop“平台”包括Hadoop内核、MapReduce、Hadoop分布式文件系统(HDFS)以及一些相关项目,有Apache Hive和Apache HBase等等。


你可能感兴趣的:(大数据)