- 后端架构师技术图谱
dreamcasher
架构师后端
《后端架构师技术图谱》(转)数据结构队列集合链表、数组字典、关联数组栈树二叉树完全二叉树平衡二叉树二叉查找树(BST)红黑树B-,B+,B*树LSM树BitSet常用算法排序、查找算法选择排序冒泡排序插入排序快速排序归并排序希尔排序堆排序计数排序桶排序基数排序二分查找Java中的排序工具布隆过滤器字符串比较KMP算法深度优先、广度优先贪心算法回溯算法剪枝算法动态规划朴素贝叶斯推荐算法最小生成树算法
- 数据结构应用实例(四)——最小生成树
cyzhou1221
数据结构基础数据结构
Content:一、问题描述二、算法思想三、代码实现四、两种算法的比较五、小结一、问题描述 利用prim算法和kruskal算法实现最小生成树问题;二、算法思想 首先判断图是否连通,只有在连通的情况下才进行最小树的生成;三、代码实现#include#include#include#definemaxx999999#pragmawarning(disable:4996)typedefstruct
- 数据结构与算法 - 贪心算法
临界点oc
数据结构与算法贪心算法算法
一、贪心例子贪心算法或贪婪算法的核心思想是:1.将寻找最优解的问题分为若干个步骤2.每一步骤都采用贪心原则,选取当前最优解3.因为没有考虑所有可能,局部最优的堆叠不一定让最终解最优贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。这种算法通常用于求解优化问题,如最小生成树、背包问题等。贪心算法的应用:1.背包问题:给定一组物品和一个背包
- C语言数据结构克鲁斯卡尔算法-求最小生成树
Yetteego
数据结构与算法(c语言)c语言C语言数据结构
/**克鲁斯卡尔算法*得到图的最小生成树*构造一个无向网的的邻接矩阵*创建一个临时数组*对edge数组进行排序*/#include#include#includetypedefchar*VertexType;//顶点的信息的数据类型typedefintArcType;//权重胡数据类型#defineVERTEXNUM100//最大顶点数#defineMAX_INT32726//权重的无限大取值#d
- 最短路算法一
halcyonfreed
算法
2024061819:33朴素版Dijkstra47:00Heap优化版1:04:00Bellman-ford最短路算法——5种!!!考察重点:不会考算法证明,这里不讲了,重点是实现+抽象1.如何建图——如何定义点边,抽象成一个图问题Prim/i/,kruskal是最小生成树算法不是prime/ai/质数1.是么时候用?方法n图的node数m边数单源:只有一个起点,求从1个点到其他所有点/第n号点
- BZOJ-2521: [Shoi2010]最小生成树(最小割)(本蒟蒻的BZOJ第401 AC撒花~)
AmadeusChan
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2521挺神奇的一个最小割模型,如果要使得该边一定在MST上,那么要保证该边连接的两个连通块之间不存在其他边权小于等于它的边,那么自然就最小割啦。代码:#include#include#includeusingnamespacestd;#definemaxn1010#definemaxv1010#
- 并查集【算法 12】
终末圆
算法算法cc++python数据结构acmc语言
并查集(Union-Find)的基础概念与实现并查集(Union-Find)是一种用于处理不相交集合(disjointsets)的数据结构,常用于解决连通性问题。典型的应用场景包括动态连通性问题(如网络节点连通性检测)、图论中的最小生成树(Kruskal算法)、社交网络中的群体归属等。并查集的两大基本操作合并操作(Union):将两个不同的集合合并为一个集合。查找操作(Find):查询某个元素属于
- 探索贪心算法:解决优化问题的高效策略
快乐非自愿
贪心算法算法
贪心算法是一种在每一步选择中都采取当前最佳选择的算法,以期在整体上达到最优解。它广泛应用于各种优化问题,如最短路径、最小生成树、活动选择等。本文将介绍贪心算法的基本概念、特点、应用场景及其局限性。贪心算法的基本概念贪心算法的核心思想是局部最优策略,即在每一步选择中都选择当前看起来最优的选项,希望通过一系列的局部最优选择达到全局最优。贪心算法的特点局部最优选择:每一步都选择当前状态下最优的操作。无需
- 数据结构——第六章 图
疯子书生z
数据结构数据结构
[知识框架]主要掌握深度优先搜索和广度优先搜索,图的基本概念及基本性质、图的存储结构(邻接矩阵、邻接表、邻接多重表和十字链表)及其特性、存储结构之间的转化、基于存储结构上的遍历操作和各种应用(拓扑排序、最小生成树、最短路径和关键路径)等。通常要求掌握基本思想和实现步骤(手动模拟)。6.1图的基本概念6.1.1图的定义图GGG由顶点集VVV和边集EEE组成,记为G=(V,E)G=(V,E)G=(V,
- 简单の暑假总结——最小生成树
C2024XSC184
笔记
6.1最小生成树我们先来了解一下最小生成树的概念:我们定义无向连通图的最小生成树(MinimumSpanningTree,MST)为边权和最小的生成树(树也叫做生成树)。——OIWiki我们举一个例子:在这样一个带权无向图中,它的最小生成树如下图所示,其权值为141414我们有222种算法来解决这个问题6.2Prim算法Prim算法无论是本质上还是代码上都与Dijkstra高度类似,本质上还是一个
- 最小生成树 - Kruskal算法
我想进大厂
算法c++图论
kruskal算法---求稀疏图的最小生成树步骤1,将所有边按权重从大到小排序,调用系统的sort函数2,枚举每条边a、b,权重cif(a、b不联通)就将这条边加入集合中输入格式第一行包含两个整数n和m。接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。输出格式共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impos
- 图与树的基本概念
小魏冬琅
其他算法
目录引言图与树结构的重要性图的基本概念图的表示方式图的遍历算法树的基本概念树的定义与性质树的遍历二叉树与多叉树的概念图与树的高级应用最短路径算法最小生成树算法总结与应用综合实例分析引言在计算机科学的世界中,图和树是两种非常重要的数据结构。它们不仅在理论上有着广泛的研究价值,更是在实际编程中广泛应用于网络通信、路径规划、数据库索引等领域。通过深入理解图与树的基本结构与算法,我们可以更高效地解决许多复
- 算法学习6——贪心算法
零 度°
算法学习算法学习贪心算法
什么是贪心算法?贪心算法是一种在每一步选择中都采取当前状态下最优或最有利的选择的算法。其核心思想是通过一系列局部最优选择来达到全局最优解。贪心算法广泛应用于各种优化问题,如最短路径、最小生成树、背包问题等。贪心算法的特点局部最优选择:每一步都做出在当前情况下最优的选择。无后效性:一旦某个状态被确定,就不会再被改变或回溯。逐步构造解决方案:通过一系列的选择逐步构建出最终的解决方案。经典例子及其Pyt
- pku acm 题目分类
moxiaomomo
算法数据结构numbers优化calendarcombinations
1.搜索//回溯2.DP(动态规划)3.贪心北大ACM题分类2009-01-2714.图论//Dijkstra、最小生成树、网络流5.数论//解模线性方程6.计算几何//凸壳、同等安置矩形的并的面积与周长sp;7.组合数学//Polya定理8.模拟9.数据结构//并查集、堆sp;10.博弈论1、排序sp;1423,1694,1723,1727,1763,1788,1828,1838,1840,22
- 蓝桥杯:C++贪心算法、字符串函数、朴素模式匹配算法、KMP算法
DaveVV
蓝桥杯c++蓝桥杯c++贪心算法算法开发语言数据结构c语言
贪心算法贪心(Greedy)算法的原理很容易理解:把整个问题分解成多个步骤,在每个步骤都选取当前步骤的最优方案,直到所有步骤结束;每个步骤都不考虑对后续步骤的影响,在后续步骤中也不再回头改变前面的选择。贪心算法虽然简单,但它有广泛的应用。例如图论中的最小生成树(MinimalSpanningTree,MST)算法、单源最短路径算法(Dijkstra)都是贪心算法的典型应用。贪心算法的主要问题是不一
- 【数据结构】图
rygttm
数据结构数据结构算法
文章目录图1.图的两种存储结构2.图的两种遍历方式3.最小生成树的两种算法(无向连通图一定有最小生成树)4.单源最短路径的两种算法5.多源最短路径图1.图的两种存储结构1.图这种数据结构相信大家都不陌生,实际上图就是另一种多叉树,每一个结点都可以向外延伸许多个分支去连接其他的多个结点,而在计算机中表示图其实很简单,只需要存储图的各个结点和结点之间的联系即可表示一个图,顶点可以采取数组vector存
- 软考30-上午题-数据结构-小结
ruleslol
软考中级学习笔记
一、杂题汇总真题1:有向图——AOV带权有向图——AOE真题2:二叉排序树:左子树<根节点<右子树。二叉排序树中序遍历,节点关键字有序(递增);关键字初始序列有序,二叉树是单支树。(无序,也可以是单支树)真题3:真题4:真题5:真题6:真题7:prim算法,时间复杂度为:O(n^2),n为图的顶点数。该算法的计算时间与图中的边数无关,所以,该算法适合边稠密的图的最小生成树。kruscal算法,时间
- 备战蓝桥杯---图论之最小生成树
CoCoa-Ck
图论算法蓝桥杯c++笔记
首先,什么是最小生成树?他就是无向图G中的所有生成树中树枝权值总和最小的。如何求?我们不妨采用以下的贪心策略:Prim算法(复杂度:(n+m)logm):我们对于把上述的点看成两个集合,一个是确定了最小生成树的点,一个还没有确定,我们只要不断把距离已经确定的集合的最短的边添加进去即可。假如我们加的距离不是最小的,那么当我们假设未确定的点已经构成了他们点的最小生成树,那么我们此时用距离最小的去添加他
- 最小生成树详解(Prim算法/Kruskal算法)
Stephen_Curry___
算法c++c语言数据结构图搜索算法
最小生成树⭐今天为大家带来的是最小生成树算法⭐在学习之前首先要搞清楚什么是最小生成树?给定一张边带权的无向图G=(V,E),其中V表示途中点的集合,E表示途中边的集合,=|V|,m=|E|。由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的以可生成树,其中边的权重之和最小被称为无向图G的最小生成树。所以最小生成树是用来计算最小边权问题。⭐最小生成树最常用的有两种算法:Prim算法(解
- 学习总结16
GGJJM
学习
#【模板】最小生成树##题目描述如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出`orz`。##输入格式第一行包含两个整数N,M,表示该图共有N个结点和M条无向边。接下来M行每行包含三个整数Xi,Yi,Zi,表示有一条长度为Zi的无向边连接结点Xi,Yi。##输出格式如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出`orz`。##样例#1###样例输入#
- 2.13学习总结
啊这泪目了
学习
1.出差(Bleeman—ford)(spfa)(dijkstra)2.最小生成树(prim)(Kruskal)最短路问题:出差https://www.luogu.com.cn/problem/P8802题目描述AA国有�N个城市,编号为1…�1…N小明是编号为11的城市中一家公司的员工,今天突然接到了上级通知需要去编号为�N的城市出差。由于疫情原因,很多直达的交通方式暂时关闭,小明无法乘坐飞机直
- 挑战程序设计竞赛最小生成树习题(4道)及详解:C++实现
新西兰做的饭
图论挑战程序设计竞赛图论kruskalprim算法c++
最小生成树POJ1258:Agri-NetPOJ2377:BadCowtractorsPOJ2395:OutofHayAOJ2224:Saveyourcats这四道题比较基本,没有过多复杂的过程,所以整合在一篇博客,适合学过最小生成树算法后来加深理解POJ1258:Agri-Net点击进入题面最小生成树模板题,输入为图的邻接矩阵,所以优先考虑prim算法:#include#includeusing
- 算法导论23章最小生成树习题—23.2练习
之墨_
算法算法最小生成树
23.2-1对于同一个输人图,Kruskal算法返回的最小生成树可以不同。这种不同来源于对边进行排序时,对权重相同的边进行的不同处理。证明:对于图G的每棵最小生成树T,都存在一种办法来对G的边进行排序,使得Kruskal算法所返回的最小生成树就是T。假设我们想选择T作为最小生成树。然后,为了使用Kruskal算法获得此树,我们将首先按边的权重对边进行排序,然后通过选取包含在最小生成树中的一条边来解
- 生成树(习题)
白色的风扇
算法
模板】最小生成树生成树有两种方法,但是我只会克鲁斯卡尔算法,所以接下来下面的的题目都是按照这个算法来实现的,首先来见一下生么是这个算法,在之前的我写的一篇博客中有题使叫修复公路,其实这一题就是使用了这个算法:用一个结构体记录两个区域的编号,和着两条区域之间道路的价值,再利用sort(排序函数)按照从小到大进行排序(有些题目要按照从大到小进行排序),利用并查集将各个区域进链接,直到所有区域都链接起来
- Python使用kruskal算法实现最小生成树
X Y sawyer
网络python算法
假如有多台计算机组成的局域网,不同计算机之间是使用光纤来连接的,如果把计算机看成是一个简单的节点,连接计算机的光纤看成是一条边,那这个局域网就可以抽象成为一个无向图:添加图片注释,不超过140字(可选)而对于这个图中的每个圆圈代表的是一个计算机,直线代表的是计算机之间的光纤连接,直线上的数字表示维护该条光纤所需要付出的成本,那现在需要降低维护成本,希望在不同计算机能够相互通信的基础上,去掉不必要的
- 克鲁斯卡尔(Kruskal)算法与普里姆(Prim)算法求最小生成树
ZYT_庄彦涛
数据结构算法算法Kruskal算法Prim算法
求下面带权图的最小(代价)生成树时,可能是克鲁斯卡尔(Kruskal)算法第2次选中但不是普里姆(Prim)算法(从v4开始)第2次选中的边是()。A.(v₁,v₃)B.(v₁,v₄)C.(v₂,v₃)D.(v₃,v₄)首先,认识什么是克鲁斯卡尔Kruskal算法和普里姆Prim算法↓克鲁斯卡尔Kruskal算法在整个过程中都是选取网中权值为最小的边克鲁斯卡尔算法是一个使网中所有顶点相连通而所需边
- 【第二十三课】最小生成树:prime 和 kruskal 算法(acwing858,859 / c++代码 )
爱写文章的小w
算法--学习笔记算法图论c++
目录前言Prime算法--加点法acwing-858代码如下一些解释Kruskal算法--加边法acwing-859并查集与克鲁斯卡尔求最小生成树代码如下一些解释前言之前学最短路的时候,我们都是以有向图为基础的,当时我们提到如果是无向图,只要记得两个顶点处都要加边就好了。而在最小生成树的问题中,我们所面临的大多都是无向图。这个姐姐对这两种算法的讲解非常清晰,没有代码部分,但是对于理解这两种算法的做
- 图(高阶数据结构)
GG_Bond20
数据结构数据结构算法c++
目录一、图的基本概念二、图的存储结构2.1邻接矩阵2.2邻接表三、图的遍历3.1广度优先遍历3.2深度优先遍历四、最小生成树4.1Kruskal算法4.2Prim算法五、最短路径5.1单源最短路径-Dijkstra算法5.2单源最短路径-Bellman-Ford算法5.3多源最短路径-Floyd-Warshall算法一、图的基本概念图是由顶点集合和边的集合组成的一种数据结构,记作有向图与无向图在有
- 力扣刷题之旅:高阶篇(四)—— 最小生成树算法
GT开发算法工程师
算法leetcode图论python数据结构职场和发展
力扣(LeetCode)是一个在线编程平台,主要用于帮助程序员提升算法和数据结构方面的能力。以下是一些力扣上的入门题目,以及它们的解题代码。引言:在算法领域中,图论是一个重要且有趣的分支,而最小生成树问题则是图论中的一个经典问题。最小生成树算法用于在一个连通的加权无向图中找到一棵边权值之和最小的生成树。在实际应用中,最小生成树算法常用于网络设计、电路设计等领域。一、最小生成树算法简介最小生成树算法
- 图论 理论以及相关题目题解的小结
芋圆西米露
【图论】吸吸吸国宝镇帖目录【图论】理论题解【搜索】【并查集】【最小生成树】【最短路】【拓扑排序】【二叉树】【简单图】【最小割】理论图论入门一图论入门二图论入门三图论入门四图论入门五图论入门六图论入门七-最小生成树图论入门八-Kruskal算法图论入门九-Prim算法求最短路径的四种方法(Dijkstra,Floyd,Bellman-Ford,SPFA算法)并查集入门(普通并查集+带删除并查集+关系
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D