- The 2023 ICPC Asia Regionals Online Contest (2)-2023 ICPC网络赛第二场部分题解 I,M
小新-杂货铺
算法竞赛补题复盘网络算法c++
目录MDirtyWork(数学期望/贪心)IImpatientPatient(数学期望)原题地址:PTA|程序设计类实验辅助教学平台(pintia.cn)MDirtyWork(数学期望/贪心)ItisanotherICPCcontest.Yourteammatessketchedoutallsolutionstotheproblemsinafractionofasecondandwentawayt
- 中心极限定理
不倒的不倒翁先森
概率论
中心极限定理(CentralLimitTheorem,CLT)是概率论中的一个重要定理,它说明了在某些条件下,独立随机变量的和(或平均值)趋向于正态分布的性质。具体来说,中心极限定理可以描述为:定理表述:设(X1,X2,…,Xn)(X_1,X_2,\dots,X_n)(X1,X2,…,Xn)是一组相互独立、服从相同分布的随机变量,其数学期望为μ\muμ,方差为σ2\sigma^2σ2(有限且不为零
- Echarts绘制任意数据的正态分布图
tsunami_______
Vueecharts前端javascript
一、什么是正态分布正态分布,又称高斯分布或钟形曲线,是统计学中最为重要和常用的分布之一。正态分布是一种连续型的概率分布,其概率密度函数(ProbabilityDensityFunction,简称PDF)可以通过一个平均值(μ,mu)和标准差(σ,sigma)来完全描述。若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准
- 概率论自复习思路
Miracle Fan
概率论
概率论复习思路(存在纰漏)文章目录概率论复习思路(存在纰漏)基本概念随机变量分布多维随机变量分布离散型连续性数字特征数学期望方差协方差系数矩、协方差矩阵大数定律抽样分布、估计、假设检验参数估计区间估计假设检验基本概念样本空间,和事件、差事件两个事件的关系:相不相容、是不是对立、两者之间的关系(ρ\rhoρ相关系数只反映线性方面,还可能存在非线性关系)事件发生的概率和发生关系:比如概率为0不一定代表
- 数学期望:靠买彩票发家为什么不现实
石小沫_
第3章频率法3.3数学期望:靠买彩票发家为什么不现实➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖️3.3数学期望:靠买彩票发家为什么不现实。️数学期望是对长期价值的数字化衡量。️数学期望简称期望,本质上是对事件长期价值的数字化衡量。✨对随机事件不同结果的概率加权求平均。(就是先把每个给果各自发生的概率和带来的影响相乘,然后把得到的数字相加,最终得到的结果就是数学期望。)️“更有效率”是一个长期价值。️️️✨要判
- 随机过程学习笔记——概论
ReEchooo
随机过程
随机过程学习笔记——概论1.随机过程1.1基本概念1.2描述随机过程的方法2.随机过程的分类和举例3.随机过程的数字特征3.1均值(数学期望)3.2方差(二阶中心矩)3.3自相关函数(简称:相关函数)3.4自协方差函数(简称:协方差函数)4.两个或两个以上随机过程的联合分布和数字特征参考教材:陆大jin《随机过程及其应用》1.随机过程1.1基本概念随机过程是这样一个过程,它不能用一个时间t的确定性
- 100天搞定机器学习|Day55 最大熵模型
统计学家
1、熵的定义熵最早是一个物理学概念,由克劳修斯于1854年提出,它是描述事物无序性的参数,跟热力学第二定律的宏观方向性有关:在不加外力的情况下,总是往混乱状态改变。熵增是宇宙的基本定律,自然的有序状态会自发的逐步变为混沌状态。1948年,香农将熵的概念引申到信道通信的过程中,从而开创了”信息论“这门学科。香农用“信息熵”来描述随机变量的不确定程度,也即信息量的数学期望。关于信息熵、条件熵、联合熵、
- 机器学习之T与F分布
WEL测试
WEL测试人工智能机器学习人工智能
T分布T分布:数学期望为mu=0,方差:σ2=nn−2(n>2)\sigma^2=\frac{n}{n-2}\quad(n>2)σ2=n−2n(n>2)。相同自由度情况下,|t|越大,概率P越小;设X~N(0,1),Y~χ2(n),并且X和Y独立,则称随机变量t=XYnt=\frac{X}{\sqrt{\frac{Y}{n}}}t=nYX服从自由度为n的t分布,记为t~t(n),t(n)分布的概率
- 人工智能之估计量评估标准及区间估计
WEL测试
人工智能WEL测试人工智能概率论机器学习
评估估计量的标准无偏性:若估计量(X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,⋯,Xn)的数学期望等于未知参数θ,即E(θ^)=θE(\hat\theta)=\thetaE(θ^)=θ则称θ^\hat\thetaθ^为θ的无偏估计量。估计量θ^\hat\thetaθ^的值不一定就是θ的真值,因为它是一个随机变量,若θ^\hat\thetaθ^是θ的无偏估计,则尽管的值随样
- Bernstein inequality伯恩施坦不等式
天空仍灿烂..
概率论人工智能
Bernsteininequality伯恩施坦不等式原公式变体公式我的疑惑问问人工智能公式知识点来源原公式概率论中,Bernsteininequalities给出了随机变量的和对平均值偏离的概率。在最简单的情况下,设X1,X2,…Xn是独立的伯努利随机变量,取值+1和-1的概率各是1/2,则对任意正数epsilon,有变体公式这个不等式的变体形式如下,设X1,X2,…Xn是数学期望为0的独立的随机
- 刘嘉概率论22讲《十.方差,围绕数学期望波动程度的度量》
阿木魔法学院
数学期望不能完整描述一个随机事件比如,你有一笔闲钱,有两个投资方案一,收益非常稳定,100%净赚5万二,不稳定,50%机会赚20万,50%机会亏10万。如果从数学期望公式来算,他们俩都是盈利5万。但是这两个方案并不一样,差别很大,具体在哪呢?一,两个方案收益稳定性不同,第一个非常稳定,第二个波动性很大。所以,数学期望不同,并不代表两件事价值一样,随机结果的波动程度,同样对一件事情的价值,对我们的决
- 机器学习之正态分布
WEL测试
人工智能WEL测试机器学习人工智能
正态分布:也称常态分布,又名高斯分布。正态曲线呈钟形,两头低,中间高,左右对称因其曲线呈钟形,也称钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ2\sigma^2σ2的正态分布,记为N(μ,σ2σ^2σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布时标准正态分布。概率密度函数为:f(x)=1σ2πe−
- 学习笔记
曲线之前剑刃之上形势节君
新公式改进=突变+选择《值得你记住的日课公式》要更新了(不全,欢迎补充):S(成功)=Q(执行力)r(想法的好坏)成功=天赋+运气大成功=多一点点天赋+很多好运气拥有更多资源=获得更好的结果成长=压力+休息知识=体验×敏感度好目标=难度X具体数学期望=成功的收益×成功的概率-失败的损失×失败的概率亲密良好的关系=开放+响应响应=理解+接受+关心梦想+现实+决心=成功人生痛苦+反思=进步塑造者=远见
- 小红叒战小紫
云儿乱飘
#动态规划经典算法c++dp
概率dp#include#include#include#include#include#include#include#include#include#include#include#include#include#include#include#definelllonglong#definePIIpair#defineTUPtupleusingnamespacestd;constintN=60
- 牛客——小红又战小紫(概率dp和逆元)
垠二
算法概率dp逆元
链接:登录—专业IT笔试面试备考平台_牛客网来源:牛客网小红上次输给了小紫,表示不服,于是又约来小紫来玩一个游戏。这次是取石子游戏:共有nnn堆石子,两人轮流使用以下两种技能中的一种进行取石子:1.随机选择某一堆石子,取走其中的一颗石子。2.每一堆石子各取走一颗石子。小红先手,谁先取完所有的石子谁获胜。两人都希望自己的获胜概率尽可能高,假设两人都绝顶聪明,请你计算小红最终获胜的概率。#includ
- 机器学习---无偏估计
三月七꧁ ꧂
机器学习机器学习人工智能概率论
1.如何理解无偏估计无偏估计:就是我认为所有样本出现的概率⼀样。假如有N种样本我们认为所有样本出现概率都是1/N。然后根据这个来计算数学期望。此时的数学期望就是我们平常讲的平均值。数学期望本质就是平均值。2.无偏估计为何叫做“无偏”?它要“估计”什么?首先回答第⼀个问题:它要“估计”什么?它要估计的是整体的数学期望(平均值)。第⼆个问题:那为何叫做无偏?有偏是什么?假设这个是⼀些样本的集合X=x1
- 武忠祥2025高等数学,基础阶段的百度网盘+视频及PDF
m0_54050778
pdf概率论
考研数学武忠祥基础主要学习以下几个方面的内容:1.微积分:主要包括极限、连续、导数、积分等概念,以及它们的基本性质和运算方法。2.线性代数:主要包括向量、向量空间、线性方程组、矩阵、行列式、特征值和特征向量等概念,以及它们的基本性质和运算方法。3概率论与数理统计:主要包括随机事件和概率、条件概率、独立性、随机变量及其分布、数学期望方差和协方差、大数定律和中心极限定理等概念以及它们的基本性质和运算方
- 牛客周赛 Round 29 (A,B,C,D,E,F)
邪神与厨二病
牛客c语言开发语言c++牛客算法
这场难度控制的特别出色,不难但是都很有意思,尤其是E这个构造部分。比赛链接,官方视频讲解。AB没有用到什么算法,C是个字符串处理,D是中位数,E是构造,F是概率DP。A小红大战小紫思路:比大小,没什么好说的code:#include#includeusingnamespacestd;intmain(){inta,b;cin>>a>>b;puts((a==b)?"draw":(a>b)?"kou":
- 牛客周赛 Round 29 F.小红又战小紫【概率dp】
lianxuhanshu_
动态规划算法动态规划
原题链接:https://ac.nowcoder.com/acm/contest/73422/F时间限制:C/C++1秒,其他语言2秒空间限制:C/C++262144K,其他语言524288K64bitIOFormat:%lld题目描述小红上次输给了小紫,表示不服,于是又约来小紫来玩一个游戏。这次是取石子游戏:共有n堆石子,两人轮流使用以下两种技能中的一种进行取石子:1.随机选择某一堆石子,取走其
- E - Sugoroku 3(数学期望)
临江浪怀柔ℳ
算法
思路:数学推导过程代码:constlonglongmod=998244353;intn;inlineintqmi(intx,inty){intz=1;for(;y;y>>=1,x=x*x%mod)if(y&1)z=z*x%mod;returnz;}voidsolve(){cin>>n;vectora(n+2),sum(n+2),dp(n+2);for(inti=1;i>a[i];for(inti=
- 牛客周赛 Round 29 解题报告 | 珂学家 | 博弈&概率DP
珂朵莉MM
牛客周赛解题报告算法力扣javaleetcodepython
前言整体评价F题真心好题,很典,学到了很多。D题用了对顶堆,写到一半就想到了更简单的方法,哭。E题是基于众数的构造。欢迎关注珂朵莉牛客周赛专栏珂朵莉牛客小白月赛专栏A.小红大战小紫思路:模拟n,m=list(map(int,input().split()))ifn>m:print("kou")elifn0:res.extend([k]*v)print(''.join(res))D.小红的中位数思路
- 【课程复习-01】国科大-随机过程知识点精简版
lzl2040
我的笔记随机过程国科大期末
国科大-随机过程知识点精简版目录国科大-随机过程知识点精简版前言随机过程及其分类常见分布的概率密度和分布0-1分布二项分布泊松分布几何分布均匀分布指数分布正态分布随机过程的两种描述方式例题随机过程X(t)的数字性质单个随机过程两个随机过程随机过程的分类方式参数集和状态空间的特性统计特征或概率特征随机过程独立条件数学期望马尔可夫过程马尔可夫链定义C-K方程m步转移概率C-K方程马尔可夫链状态的分类到
- 第三周:常用的数据分布
结尾_402b
1、正态分布正态分布(Normaldistribution),也称“常态分布”,又名高斯分布(Gaussiandistribution)正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正
- R语言机器学习与临床预测模型30--主成分分析(PCA)
科研私家菜
本内容为【科研私家菜】R语言机器学习与临床预测模型系列课程R小盐准备介绍R语言机器学习与预测模型的学习笔记你想要的R语言学习资料都在这里,快来收藏关注【科研私家菜】01基础知识介绍方差:用来衡量随机变量与其数学期望(均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。协方差:度量两个随机变量关系的统计量,协方差为0的两个随机变量是不相关的。协方差矩阵:在统
- 蒙特卡洛法求积分
Phoenix Studio
统计学机器学习数据分析twittersvg
问题一:我们如何用蒙特卡洛方法求积分?问题二:如何近似求一个随机变量的数学期望?问题三:估计的误差是多少?问题四:如何从理论上对蒙特卡洛估计做分析?结论import numpy as npimport matplotlib.pyplot as pltimport seaborn as snssns.set_style('whitegrid')问题一:我们如何用蒙特卡洛方法求积分?你眼中的蒙特卡洛方
- 概率论与数理统计(期末复习)
蓝桉802
概率论
第四章数学期望与方差1.期望的性质:E(C)=C;E(X+C)=E(X)+C;E(CX)=CE(X);E(kX+C)=kE(X)+C;E(X+Y)=E(X)+E(Y);E(X-Y)=E(X-Y);;X与Y独立:E(XY)=E(X)E(Y);2.方差的性质:D(X)=E(X^2)-[E(X)]^2D(C)=0;D(X+C)=D(X);D(CX)=C^2D(X);D(kX+C)=k^2D(X);X与Y
- 概率论与数理统计 知识点+课后习题
兑生
大学课程概率论
文章目录[学习资源整合](https://www.cnblogs.com/duisheng/p/17872980.html)总复习知识点⭐常用分布的数学期望和方差选择题填空题大题1.概率2.概率3.概率4.P5.概率6.概率密度函数F(X)F(X)F(X)7.分布列求方差V(X)V(X)V(X)8.求分布函数F(X)F(X)F(X)9.求F(X)F(X)F(X)和P(X)P(X)P(X)10.求未
- 基于MATLAB的均值,方差,变量的矩(附完整代码与例题)
唠嗑!
MATLABmatlab网络安全
目录一.数学期望与方差二.样本的均值与方差三.MATLAB代码四.例题与代码4.1正态分布4.2Rayleigh分布五.随机变量的矩5.1原点矩与中心距5.2例题35.3样本向量的原点矩与中心矩一.数学期望与方差将某连续随机变量x的概率密度函数记为p(x),其数学期望E[x]可计算为:更进一步,方差D[x]可计算为:二.样本的均值与方差在实际中测出的一组样本数据写做:该样本的均值计算为:样本的方差
- 刘嘉概率论22讲《九, 对随机事件长期价值的衡量》
阿木魔法学院
数学期望期望是对长期价值的数字化衡量数学期望简称期望,计算方法很简单,就是对随机事件不同结果的概率加权求平均。用大白话说就是,先把每个结果各自发生的概率和带来的影响相乘,然后吧算出来的数相加。最后的结果就是数学期望了。比如一只股票现在50元,有40%的概率涨到60,有30%的概率保持不变,有30%的概率跌倒35那么他到底值不值得买。(60-50)*40%+(50-50)*30%+(35-50)*3
- 概率论与数理统计 第四章 随机变量的数字特征
Jarkata
课前导读求随机变量的数字特征,需要用到高等数学中积分和级数收敛的定义。第一节数学期望离散型随机变量数学期望(均值)的定义:注意,该级数需要绝对收敛连续型随机变量的数学期望:数学期望的物理含义:质心。常用离散随机变量的数学期望:两点分布;二项分布;泊松分布以上三种分布的期望的直观解释:常用连续型随机变量的数学期望:均匀分布:;指数分布;正态分布直观解释:三、数学期望的性质数学期望的性质定理:严格意义
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&