- spark学习笔记:弹性分布式数据集RDD(Resilient Distributed Dataset)
黄道婆
bigdata
弹性分布式数据集RDD1.RDD概述1.1什么是RDDRDD(ResilientDistributedDataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将数据缓存在内存中,后续的查询能够重用这些数据,这极大地提升了查询速度。D
- Spark学习笔记五:Spark资源调度和任务调度
开发者连小超
一、StageSpark任务会根据RDD之间的依赖关系,形成一个DAG有向无环图,DAG会提交给DAGScheduler,DAGScheduler会把DAG划分相互依赖的多个stage,划分stage的依据就是RDD之间的宽窄依赖。遇到宽依赖就划分stage,每个stage包含一个或多个task任务。然后将这些task以taskSet的形式提交给TaskScheduler运行。stage切割规则切
- 【大数据】Spark学习笔记
pass night
学习笔记javaspark大数据sql
初识SparkSpark和HadoopHadoopSpark起源时间20052009起源地MapReduceUniversityofCaliforniaBerkeley数据处理引擎BatchBatch编程模型MapReduceResilientdistributedDatesets内存管理DiskBasedJVMManaged延迟高中吞吐量中高优化机制手动手动APILowlevelhighleve
- spark学习笔记(十一)——sparkStreaming-概述/特点/构架/DStream入门程序wordcount
一个人的牛牛
spark学习sparkscala大数据
目录SparkStreamingsparkStreamingDStreamsparkStreaming特点sparkStreaming构架背压机制DStream入门SparkStreamingsparkStreamingSparkStreaming用于流式数据的处理。SparkStreaming支持的数据输入源很多:Kafka、Flume、Twitter、ZeroMQ和简单的TCP套接字等等。数据
- Spark学习笔记一
孤独的偷学者
开发环境的搭建大数据spark
文章目录1Spark架构设计与原理思想1.1Spark初始1.2Spark架构核心1.3Spark的计算阶段1.4Spark执行流程1.4Spark核心模块2Spark运行环境2.1Local模式2.2Standalone模式2.2.1上传与解压Spark压缩包2.2.2默认配置文件的修改2.2.3启动集群2.2.4配置历史服务2.2.5配置高可用(HA)1Spark架构设计与原理思想1.1Spa
- 大数据Spark学习笔记—sparkcore
Int mian[]
大数据大数据sparkhadoopscala分布式
目录Spark概述核心模块Spark编程配置IDEA配置scala环境WordCount案例Spark-Standalone运行环境Local配置步骤集群分工解压文件修改配置启动集群配置历史服务器Spark-Yarn运行环境配置步骤配置历史服务器Windows运行环境配置步骤常用端口号Spark架构核心组件DriverExecutorMaster&WorkerApplicationMasterHa
- 20210127_spark学习笔记
yehaver
spark
一、部分理论spark:由Scala语言开发的快速、通用、可扩展的基于内存的大数据分析引擎。在mapreduce上进行了优化,但没mapreduce稳定。SparkCore是spark平台的基础通用执行引擎,所有其他功能都是基于。它在外部存储系统中提供内存计算和引用数据集。spark最基础的最核心的功能SparkSQL是SparkCore之上的一个组件,它引入了一个称为SchemaRDD的新数据抽
- 【Spark学习笔记】- 1Spark和Hadoop的区别
拉格朗日(Lagrange)
#Spark学习笔记spark学习笔记
目录标题Spark是什么SparkandHadoop首先从时间节点上来看:功能上来看:SparkorHadoopSpark是什么Spark是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。SparkandHadoop在之前的学习中,Hadoop的MapReduce是大家广为熟知的计算框架,那为什么咱们还要学习新的计算框架Spark呢,这里就不得不提到Spark和Hadoop的关系。首先从时间
- Spark学习笔记【基础概念】
java路飞
大数据Sparkspark大数据java
文章目录前言Spark基础Spark是什么spark和hadoop区别Spark核心模块Spark运行模式Spark运行架构运行架构Executor与Core(核)并行度(Parallelism)有向无环图(DAG)spark的提交方式clientclusterSpark核心编程三大数据结构RDD什么是RDD执行原理RDDAPIRDD创建RDD转换算子Action行动算子统计操作RDD序列化RDD
- Spark学习笔记(3)——Spark运行架构
程光CS
#Spark学习笔记
本系列文章内容全部来自尚硅谷教学视频,仅作为个人的学习笔记一、运行架构Spark框架的核心是一个计算引擎,整体来说,它采用了标准master-slave的结构。如下图所示,它展示了一个Spark执行时的基本结构。图形中的Driver表示master,负责管理整个集群中的作业任务调度。图形中的Executor则是slave,负责实际执行任务。二、核心组件由上图可以看出,对于Spark框架有两个核心组
- 【Spark学习笔记】- 4运行架构&核心组件&核心概念
拉格朗日(Lagrange)
#Spark学习笔记spark学习笔记
目录标题1运行架构2核心组件2.1Driver2.2Executor2.3Master&Worker2.4ApplicationMaster3核心概念3.1Executor与Core3.2并行度(Parallelism)3.3有向无环图(DAG)4提交流程4.1YarnClient模式4.2YarnCluster模式5分布式计算模拟5.1Driver5.2Executor5.3Executor25
- Spark学习笔记01-基础
GreenWang
本文基于Spark2.4.1进行演示,相关代码可以在我的Github上看到。简介Spark是一个分布式集群计算系统,类似Hadoop提供了强大的分布式计算能力,相比过去的批量处理系统,提供了处理更大规模数据的能力。Spark提供了Java、Python、Scala、R接口。除常见的MapReduce运算外,还支持图、机器学习、SparkSQL等计算方式。特性高效Speed,因为很多数据都在内存中,
- spark学习笔记
大数据男
hadoop实战sparkscalabigdata
文章目录1,spark架构2,spark部署模式3,spark单机模式4,standalone模式5,sparkonyarn6,idea写代码直接提交yarn7,RDD缓存持久化8,spark从mysql读写数据9,spark宽依赖、窄依赖、DAG、JOB、STAGE、Pipeline、taskset10,action和transformation11,RDD12,内存计算指的是上面13,DAG以
- Spark学习笔记(三):使用Java调用Spark集群
bluesnail95
Reduce)spark
我搭建的Spark集群的版本是2.4.4。在网上找的maven依赖,链接忘记保存了。。。。UTF-81.81.82.6.0-cdh5.14.21.1.0-cdh5.14.21.2.0-cdh5.14.22.11.82.4.4clouderahttps://repository.cloudera.com/artifactory/cloudera-repos/org.scala-langscala-l
- 2020-03-17
陆寒晨
spark学习笔记centos安装OracleVirtualBox:$sudoyuminstallkernel-develkernel-headersmakepatchgcc$sudowgethttps://download.virtualbox.org/virtualbox/rpm/el/virtualbox.repo-P/etc/yum.repos.d#安装virtualBox$sudoyum
- spark学习笔记(六)——sparkcore核心编程-RDD行动算子
一个人的牛牛
sparkspark学习大数据
行动算子-触发作业的执行(runjob)创建activeJob,提交并执行目录(1)reduce(2)collect(3)count(4)first(5)take(6)takeOrdered(7)aggregate(8)fold(9)countByKey(10)save相关算子(11)foreachRDD转换:对RDD功能的补充和封装,将旧的RDD包装成为新的RDD;RDD行动:触发任务的调度和作
- Spark学习笔记11:RDD算子
balabalalibala
Sparkspark学习bigdatascala
目录一、RDD算子二、准备工作(一)准备文件1、准备本地系统文件2、准备HDFS系统文件(二)启动SparkShell1、启动HDFS服务2、启动Spark服务3、启动SparkShell三、转化算子(一)映射算子-map()1、映射算子功能2、映射算子案例A、将rdd1每个元素翻倍得到rdd2B、将rdd1每个元素平方得到rdd21、采用普通函数作为参数传给map()算子2、用下划线表达式作为参
- pyspark学习笔记——RDD
千层肚
学习大数据spark
目录1.程序执行入口SparkContext对象2.RDD的创建2.1通过并行化集合创建(本地对象转分布式RDD)2.2读取外部数据源(读取文件)2.2.1使用textFileAPI2.2.2wholeTextFileAPI2.3RDD算子2.4常用Transformation算子2.4.1map算子2.4.2flatMap算子2.4.3reduceByKey算子2.4.4mapValues算子2
- Spark学习笔记(1)RDD
灯火gg
RDDRDD(ResilientDistributedDataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。RDD内部结构.pngRDD5大特型Alistof
- Spark学习笔记(一):Spark 基本原理
leo825...
大数据学习spark学习笔记
文章目录1、Spark整体架构1.1、Spark集群角色1.1.1、ClusterManager1.1.2、WorkerNode1.1.3、Executor1.1.4、Application1.1.5、Driver1.1.6、Executor2、Spark运行基本流程2.1、RDD2.2、DAG2.3、DAGScheduler2.4、TaskScheduler2.5、Job2.6、Stage2.7
- Spark学习笔记——龟速更新。。
5akura
个人学习笔记boxhadoopsparkscalajava
文章目录Spark学习笔记第一章、基本认识与快速上手1.1、认识Spark1.2、对比Hadoop1.3、Spark组成基本介绍1.4、快速上手之WorldCount实现1.4.1、方式一(Scala类似集合操作实现)1.4.2、方式二(MR思维实现)1.4.3、方式三(Spark实现)第二章、环境搭建2.1、Local模式2.1.1、SparkShell命令行执行2.1.2、spark-subl
- spark rdd java_Spark学习笔记之Spark中的RDD的具体使用
Minitab Users Group
sparkrddjava
1.Spark中的RDDResilientDistributedDatasets(弹性分布式数据集)Spark中的最基本的抽象有了RDD的存在我们就可以像操作本地集合一样操作分布式的数据包含所有元素的分区的集合RDD包含了很多的分区2.RDD中的弹性RDD中的数据是可大可小的RDD的数据默认情况下存放在内存中的,但是在内存资源不足时,Spark会自动将RDD数据写入磁盘RDD有自动容错功能,当其中
- 大数据系列——Spark学习笔记之Spark中的RDD
EVAO
大数据
1.Spark中的RDDResilientDistributedDatasets(弹性分布式数据集)Spark中的最基本的抽象有了RDD的存在我们就可以像操作本地集合一样操作分布式的数据包含所有元素的分区的集合RDD包含了很多的分区2.RDD中的弹性RDD中的数据是可大可小的RDD的数据默认情况下存放在内存中的,但是在内存资源不足时,Spark会自动将RDD数据写入磁盘RDD有自动容错功能,当其中
- spark运行原理
潮生明月
sparkspark
1、YARN架构设计详解2、SparkonYarn的运行原理3、详细探究Spark的shuffle实现4、Spark基本工作流程及YARNcluster模式原理5、Spark学习笔记1:Application,Driver,Job,Task,Stage理解6、Spark学习之路(三)Spark之RDD7、SparkCore_资源调度与任务调度详述
- Spark学习笔记[3]-Spark安装部署
kinglinch
大数据sparkbigdata
Spark学习笔记[3]-Spark安装部署1、下载对应版本的spark 官网我始终都下不下来,推荐一个国内的镜像:https://mirrors.tuna.tsinghua.edu.cn/apache/spark2、概述2-1安装模式 虽然Spark是一个分布式计算框架,但是其不属于HadoopProject,它有自己的资源层管理和文件系统,可以不依赖Hadoop的HDFS和Yarn,所以安
- Spark学习笔记
zhglance
1.Spark简述Spark通过内存计算能力,急剧的提高大数据处理速度。解决了Hadoop只适合于离线的高吞吐量、批量处理的业务场景的弊端,提出了实时计算的解决方法。1.1Spark特点a.快速处理能力:Hadoop的MapReduce中间数据采用磁盘存储,而Spark优先使用内存避免大量的磁盘IO,极大的提高了计算速度;b.支持性强:Spark支持Java、Scala、Python等;c.可查询
- SPark学习笔记:08-SParkSQL的DataFrame和DataSet操作
wangzhongyudie
大数据Sparkspark学习大数据
文章目录概述DataFrame的常用API操作添加maven依赖创建SparkSessionDataFrame的创建DataFrame的DSL操作DataFrame的SQL操作DataSet的常用操作DataSet的创建DataSet与DataFrame、RDD之间的关系和互转概述在Spark中DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库的二维表格。和python的Pan
- spark学习笔记(九)——sparkSQL核心编程-DataFrame/DataSet/DF、DS、RDD三者之间的转换关系
一个人的牛牛
sparkspark学习大数据scala
目录前言DataFrame创建DataFrameSQL语法DSL语法RDD转换为DataFrameDataFrame转换为RDDDataSet创建DataSetRDD转换为DataSetDataSet转换为RDDDataSet和DataFrame的转换RDD、DataFrame、DataSet之间的关系相同点区别点相互转换sparkSQL-IDEA编程添加依赖RDDDataSetDataFrame
- Spark学习笔记08:Scala数据结构
balabalalibala
Sparkscala数据结构开发语言
目录(一)定长数组1、数组定义(1)定义数组时初始化数据(2)定义时指定数组长度后赋值2、数组遍历(1)传统for循环方式(2)增强for循环方式(3)利用foreach算子遍历数组(4)数组求和3、常用方法(1)求数组中数值总和(2)求数组中的最大值(3)求数组中的最小值(4)对数组进行升序排序(5)对数组进行降序排序(二)变长数组1、数组定义2、数组合并3、插入元素4、移除元素二、列表(Lis
- pyspark学习笔记:4- zookeeper3.5.9+kafka2.11-2.4.1单机部署+python api模拟消费者+pyspark结构化流集成kafka的简单使用-2023-2-14
Merlin雷
大数据学习笔记kafka学习python
pyspark学习笔记:4-zookeeper3.5.9+kafka2.11-2.4.1单机部署+pythonapi和pyspark结构化流集成kafka的简单使用-2023-2-14zookeeper单机部署安装配置文件启动Kafka单机部署安装配置文件启动创建主题查看主题查看某个topic的详细信息删除主题模拟生产者消费者pythonAPI安装模拟消费者python模拟生产者pyspark结构
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息