生成测试数据 用于spark本地测试用
package cn.tkk.util;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import java.util.*;
public class MockData {
/**
* 模拟数据
* @param sc
* @param sqlContext
*/
public static void mock(JavaSparkContext sc,
SQLContext sqlContext) {
List rows = new ArrayList();
String[] searchKeywords = new String[] {"火锅", "蛋糕", "重庆辣子鸡", "重庆小面",
"呷哺呷哺", "新辣道鱼火锅", "国贸大厦", "太古商场", "日本料理", "温泉"};
String date = DateUtils.getTodayDate();
String[] actions = new String[]{"search", "click", "order", "pay"};
Random random = new Random();
for(int i = 0; i < 100; i++) {
long userid = random.nextInt(100);
for(int j = 0; j < 10; j++) {
String sessionid = UUID.randomUUID().toString().replace("-", "");
String baseActionTime = date + " " + random.nextInt(23);
Long clickCategoryId = null;
for(int k = 0; k < random.nextInt(100); k++) {
long pageid = random.nextInt(10);
String actionTime = baseActionTime + ":" + StringUtils.fulfuill(String.valueOf(random.nextInt(59))) + ":" + StringUtils.fulfuill(String.valueOf(random.nextInt(59)));
String searchKeyword = null;
Long clickProductId = null;
String orderCategoryIds = null;
String orderProductIds = null;
String payCategoryIds = null;
String payProductIds = null;
String action = actions[random.nextInt(4)];
if("search".equals(action)) {
searchKeyword = searchKeywords[random.nextInt(10)];
} else if("click".equals(action)) {
if(clickCategoryId == null) {
clickCategoryId = Long.valueOf(String.valueOf(random.nextInt(100)));
}
clickProductId = Long.valueOf(String.valueOf(random.nextInt(100)));
} else if("order".equals(action)) {
orderCategoryIds = String.valueOf(random.nextInt(100));
orderProductIds = String.valueOf(random.nextInt(100));
} else if("pay".equals(action)) {
payCategoryIds = String.valueOf(random.nextInt(100));
payProductIds = String.valueOf(random.nextInt(100));
}
Row row = RowFactory.create(date, userid, sessionid,
pageid, actionTime, searchKeyword,
clickCategoryId, clickProductId,
orderCategoryIds, orderProductIds,
payCategoryIds, payProductIds,
Long.valueOf(String.valueOf(random.nextInt(10))));
rows.add(row);
}
}
}
JavaRDD rowsRDD = sc.parallelize(rows);
StructType schema = DataTypes.createStructType(Arrays.asList(
DataTypes.createStructField("date", DataTypes.StringType, true),
DataTypes.createStructField("user_id", DataTypes.LongType, true),
DataTypes.createStructField("session_id", DataTypes.StringType, true),
DataTypes.createStructField("page_id", DataTypes.LongType, true),
DataTypes.createStructField("action_time", DataTypes.StringType, true),
DataTypes.createStructField("search_keyword", DataTypes.StringType, true),
DataTypes.createStructField("click_category_id", DataTypes.LongType, true),
DataTypes.createStructField("click_product_id", DataTypes.LongType, true),
DataTypes.createStructField("order_category_ids", DataTypes.StringType, true),
DataTypes.createStructField("order_product_ids", DataTypes.StringType, true),
DataTypes.createStructField("pay_category_ids", DataTypes.StringType, true),
DataTypes.createStructField("pay_product_ids", DataTypes.StringType, true),
DataTypes.createStructField("city_id", DataTypes.LongType, true)));
Dataset df = sqlContext.createDataFrame(rowsRDD, schema);
System.out.println("#################打印session信息#########################");
df.show();//默认打印20条
df.registerTempTable("user_visit_action");
/*for(Row _row : df.take(1)) {
System.out.println(_row);
}*/
/**
* ==================================================================
*/
rows.clear();
String[] sexes = new String[]{"male", "female"};
for(int i = 0; i < 100; i ++) {
long userid = i;
String username = "user" + i;
String name = "name" + i;
int age = random.nextInt(60);
String professional = "professional" + random.nextInt(100);
String city = "city" + random.nextInt(100);
String sex = sexes[random.nextInt(2)];
Row row = RowFactory.create(userid, username, name, age,
professional, city, sex);
rows.add(row);
}
rowsRDD = sc.parallelize(rows);
StructType schema2 = DataTypes.createStructType(Arrays.asList(
DataTypes.createStructField("user_id", DataTypes.LongType, true),
DataTypes.createStructField("username", DataTypes.StringType, true),
DataTypes.createStructField("name", DataTypes.StringType, true),
DataTypes.createStructField("age", DataTypes.IntegerType, true),
DataTypes.createStructField("professional", DataTypes.StringType, true),
DataTypes.createStructField("city", DataTypes.StringType, true),
DataTypes.createStructField("sex", DataTypes.StringType, true)));
Dataset df2 = sqlContext.createDataFrame(rowsRDD, schema2);
/*for(Row _row : df2.take(1)) {
System.out.println(_row);
}*/
df2.show();
df2.registerTempTable("user_info");
/**
* ==================================================================
*/
System.out.println("打印 用户信息");
rows.clear();
int[] productStatus = new int[]{0, 1};
for(int i = 0; i < 100; i ++) {
long productId = i;
String productName = "product" + i;
String extendInfo = "{\"product_status\": " + productStatus[random.nextInt(2)] + "}";
Row row = RowFactory.create(productId, productName, extendInfo);
rows.add(row);
}
rowsRDD = sc.parallelize(rows);
StructType schema3 = DataTypes.createStructType(Arrays.asList(
DataTypes.createStructField("product_id", DataTypes.LongType, true),
DataTypes.createStructField("product_name", DataTypes.StringType, true),
DataTypes.createStructField("extend_info", DataTypes.StringType, true)));
Dataset df3 = sqlContext.createDataFrame(rowsRDD, schema3);
/* for(Row _row : df3.take(1)) {
System.out.println(_row);
}*/
df3.show();
df3.registerTempTable("product_info");
}
}