HDU 5441 Travel (并查集 离线处理)

题意:给你n个点,m条带权边,现在q次询问,每次询问给你一个val,让你求有多少对点能相连且路径上最大权不能

超过val。(ab和ba算两对)(n<=2e4, m<=1e5, q<=5e3)


思路:把每条边按权值从小到大排序,按每次询问val值从小到大排序,枚举询问时,不断加上<=val的边。用并查集

得每次加一条边后新产生的点对。用一个数组num[i],来记录i这个联通块的点的数量。每次两个联通块相连,新增

加的点对数为num[a]*num[b]*2.


代码:

#include
#include
#include
#include
using namespace std;
typedef long long ll;
const int maxn = 1e5+5;
int pre[maxn], n, m, q;
ll cnt, num[maxn], ans[maxn];
struct node1
{
    int u, v, w;
    bool operator < (const node1 &a) const
    {
        return w < a.w;
    }
}edge[maxn];

struct node2
{
    int d, id;
    bool operator < (const node2 &a) const
    {
        return d < a.d;
    }
}op[maxn];

int Find(int x)
{
    int r = x;
    while(pre[r] != r) r = pre[r];
    int i = x, j;
    while(i != r)
    {
        j = pre[i];
        pre[i] = r;
        i = j;
    }
    return r;
}

void join(int x, int y)
{
    int a = Find(x);
    int b = Find(y);
    if(a != b)
    {
        pre[b] = a;
        cnt += num[b]*num[a]*2;
        num[a] += num[b];
    }
}

int main(void)
{
    int t;
    cin >> t;
    while(t--)
    {
        cnt = 0;
        scanf("%d%d%d", &n, &m, &q);
        for(int i = 1; i <= n; i++)
            pre[i] = i, num[i] = 1;
        for(int i = 1; i <= m; i++)
            scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].w);
        for(int i = 1; i <= q; i++)
            scanf("%d", &op[i].d), op[i].id = i;
        sort(edge+1, edge+1+m);
        sort(op+1, op+1+q);
        for(int i = 1, j = 1; i <= q; i++)
        {
            while(edge[j].w <= op[i].d)
                join(edge[j].u, edge[j].v), j++;
            ans[op[i].id] = cnt;
        }
        for(int i = 1; i <= q; i++)
            printf("%lld\n", ans[i]);
    }
    return 0;
}


n 20000 , m 100000 , q 5000

你可能感兴趣的:(并查集)