- Unet系列网络解析
TechMasterPlus
图像分割计算机视觉人工智能深度学习
UnetUNet最早发表在2015的MICCAI上,到2020年中旬的引用量已经超过了9700多次,估计现在都过万了,从这方面看足以见得其影响力。当然,UNet这个基本的网络结构有太多的改进型,应用范围已经远远超出了医学图像的范畴。我们先从最原始的UNet网络模型开始讲解。1、UNet网络结构 开始时,UNet主要应用在医学图像的分割,并且快速成为大多做医学图像语义分割任务的baseline
- 2024-01-04 学习笔记
qq_19986067
学习笔记
1.语义分割中的lossfunction最全面汇总摘要这篇文章主要讨论了在图像语义分割任务中常用的几种损失函数,包括交叉熵损失、加权损失、焦点损失和Dicesoft损失。交叉熵损失是最常用的损失函数之一,用于比较每个像素的类别预测结果与标签向量,特别适用于多类别预测。加权损失用于解决类别不均衡的问题,通过对正负样本的损失赋予不同的权重来平衡样本分布。焦点损失则进一步关注难学习的样本,通过修改二元交
- 大创项目推荐 深度学习实现语义分割算法系统 - 机器视觉
laafeer
python
文章目录1前言2概念介绍2.1什么是图像语义分割3条件随机场的深度学习模型3\.1多尺度特征融合4语义分割开发过程4.1建立4.2下载CamVid数据集4.3加载CamVid图像4.4加载CamVid像素标签图像5PyTorch实现语义分割5.1数据集准备5.2训练基准模型5.3损失函数5.4归一化层5.5数据增强5.6实现效果6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习实现语义分割算
- 语义分割:U-Net、UNet++、U2Net的联系和区别
xifenglie123321
计算机视觉人工智能深度学习
U-Net、UNet++、U2Net都是基于U-Net网络结构的改进版本,主要用于图像语义分割任务。U-Net是一种经典的图像语义分割网络,它由一个编码器和一个解码器组成,其中编码器用于提取图像特征,解码器用于将特征图还原为原始图像大小的分割结果。U-Net的特点是具有较强的特征提取能力和较高的分割精度,但在处理细节信息时可能存在一定的局限性。UNet++是对U-Net的改进,它通过增加多个分支和
- CAFFE -FCN训练配置过程
visionshop
深度学习
转载自http://blog.csdn.net/jiongnima/article/details/78549326?locationNum=3&fps=1在2015年发表于计算机视觉顶会CVPR上的FullyConvolutionalNetworksforSemanticSegmentation论文(下文中简称FCN)开创了图像语义分割的新流派。在后来的科研工作者发表学术论文做实验的时候,还常常
- YOLOv5算法进阶改进(9)— 引入ASPP | 空洞空间金字塔池化
小哥谈
YOLOv5:从入门到实战YOLO人工智能计算机视觉目标检测深度学习机器学习
前言:Hello大家好,我是小哥谈。ASPP是空洞空间金字塔池化(AtrousSpatialPyramidPooling)的缩写。它是一种用于图像语义分割任务的特征提取方法。ASPP通过在不同尺度上进行空洞卷积操作,从而捕捉到图像中不同尺度的上下文信息。ASPP的主要思想是在输入特征图上应用多个不同采样率的空洞卷积,然后将这些特征图进行池化和融合,最后输出一个具有丰富上下文信息的特征图。前期回顾:
- Python遥感影像深度学习指南(3)-卫星图像语义分割之用PyTorch创建一个简单的U-Net 模型
gis收藏家
Python数据处理python深度学习pytorch
在上一篇文章中,介绍了如何在不使用torchvision模块的情况下,创建卫星图像的多通道数据集。现在,我们将继续创建一个简单的深度学习模型,用于卫星图像的语义分割。1、介绍下图来自"卷积神经网络实现了从高分辨率无人机图像中高效、准确、精细地分割植物物种和群落"的论文,我们要创建的U-Net模型与其类似,其中我们有3个压缩块contractingblocks和3个上采样块(也叫扩展块)upsamp
- 图像分割网络FCN详解与代码实现
金戈鐡馬
深度学习网络深度学习计算机视觉人工智能神经网络
全卷积网络(FCN):卷积神经网络从图像分类到到对象检测、实例分割、到图像语义分割、是卷积特征提取从粗糙输出到精炼输出的不断升级,基于卷积神经网络的全卷积分割网络FCN是像素级别的图像语义分割网络,相比以前传统的图像分割方法,基于卷积神经网络的分割更加的精准,适应性更强。上图是FCN网络像素级别的预测,支持每个像素点20个类别预测,多出来的一个类别是背景。要把一个正常的图像分类网络,转换为一个全卷
- 深度学习医学图像语义分割实战(一)
grace 1314
深度学习深度学习人工智能
1.什么是图像语义分割segementation一般是只对图像整体做分类,那么如果是将图像的目标提取出来,这就是语义分割。与分类不同的是,语义分割需要判断每个像素点的类别,进行精确分割,产生目标的掩码,图像的语义分割是像素级别的。2.如何对每个像素点进行分类语义分割最经典网络--FCN,常规的图像分类网络是最后展成全连接层,是一维输出,而FCN则可以将全连接层换成卷积,这样就可以得到一张二维的fe
- 阅读代码的记录
小鹿学程序
实习记录深度学习计算机视觉目标检测
1-utils_metrics.py用在train.py中做指标衡量,现在想在推理(predict.py)的时候衡量一下指标2-调研眼睛部位的单独分割。https://blog.csdn.net/qq_40234695/article/details/88633094衡量图像语义分割准确率主要有三种方法:像素准确率(pixelaccuracy,PA)平均像素准确率(meanpixelaccurac
- 秋天的第一个模型——DANet
--行者
计算机视觉人工智能
(1)模型介绍DANet全称为DualAttentionNetwork,是一种用于图像语义分割的深度神经网络模型。DANet利用了空间注意力机制和通道注意力机制来捕获图像中的空间和通道信息,从而提高了分割的准确性。在DANet中,空间注意力机制用于对每个像素点周围的上下文信息进行建模,以便更好地捕捉物体的形状和边缘信息。而通道注意力机制则用于对每个特征通道进行加权,以便更好地挖掘有用的特征信息。D
- 软著项目推荐 深度学习实现语义分割算法系统 - 机器视觉
iuerfee
python
文章目录1前言2概念介绍2.1什么是图像语义分割3条件随机场的深度学习模型3\.1多尺度特征融合4语义分割开发过程4.1建立4.2下载CamVid数据集4.3加载CamVid图像4.4加载CamVid像素标签图像5PyTorch实现语义分割5.1数据集准备5.2训练基准模型5.3损失函数5.4归一化层5.5数据增强5.6实现效果6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习实现语义分割算
- Pytorch 基于 deeplabv3_resnet50 迁移训练自己的图像语义分割模型
小毕超
机器学习pytorch人工智能python
一、图像语义分割图像语义分割是计算机视觉领域的一项重要任务,旨在将图像中的每个像素分配到其所属的语义类别,从而实现对图像内容的细粒度理解。与目标检测不同,图像语义分割要求对图像中的每个像素进行分类,而不仅仅是确定物体的边界框。deeplabv3_resnet50就是一个常用的语义分割模型,它巧妙地将两个强大的神经网络架构融合在一起,为像素级别的图像理解提供了强大的解决方案。首先,DeepLabV3
- 深度学习实现语义分割算法系统 - 机器视觉 计算机竞赛
Mr.D学长
pythonjava
文章目录1前言2概念介绍2.1什么是图像语义分割3条件随机场的深度学习模型3\.1多尺度特征融合4语义分割开发过程4.1建立4.2下载CamVid数据集4.3加载CamVid图像4.4加载CamVid像素标签图像5PyTorch实现语义分割5.1数据集准备5.2训练基准模型5.3损失函数5.4归一化层5.5数据增强5.6实现效果6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习实现语义分割算
- 自动驾驶入门日记-5-视频语义分割
我爱大头老婆
相比于图像语义分割,视频语义分割具有高帧数(15-30帧/s),前后帧之间高相关性的特点。并且在自动驾驶任务中,对RGB摄像头传入的视频帧信号处理具有很高的实时性要求,因此针对视频语义分割任务来讲,需要在图像语义分割的任务上做进一步的工作。如何有效利用视频帧之间的时序相关性将对视频分割结果产生很大影响,目前主流分为两派,一类是利用时间连续性增强语义分割结果的准确性,另一种则关注如何降低计算成本,以
- FCN与CNN最大的区别?
今年不吃饭...
ubuntu深度学习
解析:FCN中用卷积层替换了CNN中的全连接层1、FCN概述CNN做图像分类甚至做目标检测的效果已经被证明并广泛应用,图像语义分割本质上也可以认为是稠密的目标识别(需要预测每个像素点的类别)。传统的基于CNN的语义分割方法是:将像素周围一个小区域(如25*25)作为CNN输入,做训练和预测。这样做有3个问题: -像素区域的大小如何确定; -存储及计算量非常大; -像素区域的大小
- Mask RCNN - 标注软件
Oscar_hailiang
图像语义分割是一种pixel-wise级的一种图像分类操作,其目的是在图像中上的同一个类别上打上相同的label,以表示这个类别是同一类。在训练自己的数据集中,语义分割最重要且最基础的一步便是对图像进行标注,以训练得到自己的模型。在这推荐一个python版的labelme,链接:https://github.com/wkentaro/labelmepipinstalllabelme通过open读取
- 用于高分辨率遥感图像语义分割的边缘引导网络
火柴狗
网络
EdgeGuidanceNetworkforSemanticSegmentationofHigh-ResolutionRemoteSensingImagesEdgeGuidanceNetworkforSemanticSegmentationofHigh-ResolutionRemoteSensingImages背景贡献、总结实验方法语义特征分支空间特征分支空间-语义特征融合解码器损失函数语义损失边
- 【论文阅读】Swin Transformer Embedding UNet用于遥感图像语义分割
川川子溢
论文阅读transformer深度学习pytorch
【论文阅读】SwinTransformerEmbeddingUNet用于遥感图像语义分割文章目录【论文阅读】SwinTransformerEmbeddingUNet用于遥感图像语义分割一、相应介绍二、相关工作2.1基于CNN的遥感图像语义分割2.2Self-Attention机制2.3VisionTransformer三、方法3.1网络结构3.2SwinTransformerBlocK3.3空间交
- 第91步 深度学习图像分割:FCN建模
Jet4505
《100StepstoGetML》—JET学习笔记深度学习人工智能图像分割FCN
基于WIN10的64位系统演示一、写在前面本期,我们继续学习深度学习图像分割系列的另一个模型,FCN(FullyConvolutionalNetwork)。二、FCNFCN是一种用于图像语义分割的神经网络。与传统的分类网络(如VGG、AlexNet)不同,FCN可以为输入图像中的每个像素生成一个分类标签。(1)核心特点与组成部分全卷积化:FCN的名称来源于其结构,它不包含任何全连接层。传统的全连接
- 深度学习AIR-PolSAR-Seg图像数据预处理
独行的喵
深度学习人工智能
文章目录深度学习sar图像数据预处理一.图片预处理操作1.log(1+x)处理2.sqrt平方化处理二.原网络训练效果展示原始数据训练效果展示:三.对比实验1.采用原始数据2.采用取log(1+x)后的数据3.采用取平方后归一化处理:四.总结:五.思考深度学习sar图像数据预处理一.图片预处理操作用于sar图像语义分割的图片为512x512x1的图片,有HH,HV,VH,VV四种极化方式我们拿到的
- 点云学习记录
一个机械高工的码农人生
学习
(50封私信/79条消息)三维点云数据的语义分割方法除了pointnet还有哪些呢?-知乎(zhihu.com)(50封私信/80条消息)点云特征提取-搜索结果-知乎(zhihu.com)(50封私信/80条消息)点云提取特征如何进行关键点匹配?-知乎(zhihu.com)1、图像语义分割1.1、基于全卷积网络的方法自2012年AlexNet[1]问世以来,CNN在图像分类和目标检测中均取得了巨大
- labelme 语义分割数据集_图像语义分割标注工具labelme制作自己的数据集用于mask-rcnn训练...
weixin_39556064
labelme语义分割数据集
labelme(标注mask数据集用的)windowspython2pipinstallpyqtpipinstalllabelmepython3pipinstallpyqt5pipinstalllabelmeubuntu16.04系统自带的python2.7环境sudoapt-getinstallpython-qt4pyqt4-dev-toolssudopipinstalllabelme#pyth
- 图像语义分割准确率度量方法总结
weixin_30768661
人工智能python
图像语义分割准确率度量方法总结衡量图像语义分割准确率主要有三种方法:像素准确率(pixelaccuracy,PA)平均像素准确率(meanpixelaccuracy,MPA)平均IOU(MeanIntersectionoverUnion,MIOU)在介绍三种方法之前,需要先说明一些符号表示的意义。:类别总数,如果包括背景的话就是:真实像素类别为的像素被预测为类别
- 竞赛选题 深度学习实现语义分割算法系统 - 机器视觉
laafeer
python
文章目录1前言2概念介绍2.1什么是图像语义分割3条件随机场的深度学习模型3\.1多尺度特征融合4语义分割开发过程4.1建立4.2下载CamVid数据集4.3加载CamVid图像4.4加载CamVid像素标签图像5PyTorch实现语义分割5.1数据集准备5.2训练基准模型5.3损失函数5.4归一化层5.5数据增强5.6实现效果6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习实现语义分割算
- 自动驾驶入门日记-2-图像语义分割
我爱大头老婆
对交通场景的有效认知是自动驾驶中的关键一环,尤其是对道路可行域的识别和检测,对前方车辆行人的识别和轨迹预测,这些行为的预测准确性直接决定了自动驾驶汽车的安全性能,例如几年前一辆特斯拉L2级别的自动驾驶汽车由于将一辆白色大货车误识别为天空,导致车毁人亡的悲剧。同时相比于激光雷达的物体检测,使用RGB图像信息可以完成在雾、雪、沙尘暴等恶劣天气条件下的物体检测并且成本较低。而单纯的物体检测会丢失场景的相
- 全连接神经网络 - FCN
mango1698
Python神经网络人工智能深度学习目标检测
FCN(全卷积神经网络)图像语义分割的一种框架,是深度学习用于语义分割领域的开山之作。FCN将传统CNN后面的全连接层换成了卷积层,这样网络的输出将是热力图而非类别;同时,为解决卷积和池化导致图像尺寸的变小,使用上采样方式对图像尺寸进行恢复。FCN网络的特点:不含全连接层的全卷积网络,可适应任意尺寸输入;反卷积层增大图像尺寸,输出精细结果;跳级结构,确保鲁棒性和精确性。语义分割是对图像中的每个像素
- 图像语义分割 pytorch复现DeepLab v1图像分割网络详解以及pytorch复现(骨干网络基于VGG16、ResNet50、ResNet101)
郭庆汝
pytorch网络人工智能1024程序员节
图像语义分割pytorch复现DeepLabv1图像分割网络详解以及pytorch复现(骨干网络基于VGG16、ResNet50、ResNet101)背景介绍2、网络结构详解2.1LarFOV效果分析2.2DeepLabv1-LargeFOV模型架构2.3MSc(Multi-Scale,多尺度(预测))2.3以VGG16为特征提取骨干网络代码pytorch实现网络结构项目背景介绍论文名称:Sema
- 图像语义分割 pytorch复现U2Net图像分割网络详解
郭庆汝
网络pytorchU2Net
图像语义分割pytorch复现U2Net图像分割网络详解1、U2Net网络模型结构2、block模块结构解析RSU-7模块RSU-4FsaliencymapfusionmoduleU2Net网络结构详细参数配置RSU模块代码实现RSU4F模块代码实现u2net_full与u2net_lite模型配置函数U2Net网络整体定义类损失函数计算评价指标数据集pytorch训练U2Net图像分割模型U2-
- 使用 labelme 进行图像语义分割标注
谢小帅
安装过程:https://blog.csdn.net/u011574296/article/details/797406331.手工标注并保存为json文件Ctrl+S保存为*.json文件2.labelme自带指令将json文件转换为分割图像labelme_json_to_dataset0.json生成一个文件夹img.pnglabel.pnglabel_viz.png其中每个类的颜色是labe
- ztree设置禁用节点
3213213333332132
JavaScriptztreejsonsetDisabledNodeAjax
ztree设置禁用节点的时候注意,当使用ajax后台请求数据,必须要设置为同步获取数据,否者会获取不到节点对象,导致设置禁用没有效果。
$(function(){
showTree();
setDisabledNode();
});
- JVM patch by Taobao
bookjovi
javaHotSpot
在网上无意中看到淘宝提交的hotspot patch,共四个,有意思,记录一下。
7050685:jsdbproc64.sh has a typo in the package name
7058036:FieldsAllocationStyle=2 does not work in 32-bit VM
7060619:C1 should respect inline and
- 将session存储到数据库中
dcj3sjt126com
sqlPHPsession
CREATE TABLE sessions (
id CHAR(32) NOT NULL,
data TEXT,
last_accessed TIMESTAMP NOT NULL,
PRIMARY KEY (id)
);
<?php
/**
* Created by PhpStorm.
* User: michaeldu
* Date
- Vector
171815164
vector
public Vector<CartProduct> delCart(Vector<CartProduct> cart, String id) {
for (int i = 0; i < cart.size(); i++) {
if (cart.get(i).getId().equals(id)) {
cart.remove(i);
- 各连接池配置参数比较
g21121
连接池
排版真心费劲,大家凑合看下吧,见谅~
Druid
DBCP
C3P0
Proxool
数据库用户名称 Username Username User
数据库密码 Password Password Password
驱动名
- [简单]mybatis insert语句添加动态字段
53873039oycg
mybatis
mysql数据库,id自增,配置如下:
<insert id="saveTestTb" useGeneratedKeys="true" keyProperty="id"
parameterType=&
- struts2拦截器配置
云端月影
struts2拦截器
struts2拦截器interceptor的三种配置方法
方法1. 普通配置法
<struts>
<package name="struts2" extends="struts-default">
&
- IE中页面不居中,火狐谷歌等正常
aijuans
IE中页面不居中
问题是首页在火狐、谷歌、所有IE中正常显示,列表页的页面在火狐谷歌中正常,在IE6、7、8中都不中,觉得可能那个地方设置的让IE系列都不认识,仔细查看后发现,列表页中没写HTML模板部分没有添加DTD定义,就是<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3
- String,int,Integer,char 几个类型常见转换
antonyup_2006
htmlsql.net
如何将字串 String 转换成整数 int?
int i = Integer.valueOf(my_str).intValue();
int i=Integer.parseInt(str);
如何将字串 String 转换成Integer ?
Integer integer=Integer.valueOf(str);
如何将整数 int 转换成字串 String ?
1.
- PL/SQL的游标类型
百合不是茶
显示游标(静态游标)隐式游标游标的更新和删除%rowtyperef游标(动态游标)
游标是oracle中的一个结果集,用于存放查询的结果;
PL/SQL中游标的声明;
1,声明游标
2,打开游标(默认是关闭的);
3,提取数据
4,关闭游标
注意的要点:游标必须声明在declare中,使用open打开游标,fetch取游标中的数据,close关闭游标
隐式游标:主要是对DML数据的操作隐
- JUnit4中@AfterClass @BeforeClass @after @before的区别对比
bijian1013
JUnit4单元测试
一.基础知识
JUnit4使用Java5中的注解(annotation),以下是JUnit4常用的几个annotation: @Before:初始化方法 对于每一个测试方法都要执行一次(注意与BeforeClass区别,后者是对于所有方法执行一次)@After:释放资源 对于每一个测试方法都要执行一次(注意与AfterClass区别,后者是对于所有方法执行一次
- 精通Oracle10编程SQL(12)开发包
bijian1013
oracle数据库plsql
/*
*开发包
*包用于逻辑组合相关的PL/SQL类型(例如TABLE类型和RECORD类型)、PL/SQL项(例如游标和游标变量)和PL/SQL子程序(例如过程和函数)
*/
--包用于逻辑组合相关的PL/SQL类型、项和子程序,它由包规范和包体两部分组成
--建立包规范:包规范实际是包与应用程序之间的接口,它用于定义包的公用组件,包括常量、变量、游标、过程和函数等
--在包规
- 【EhCache二】ehcache.xml配置详解
bit1129
ehcache.xml
在ehcache官网上找了多次,终于找到ehcache.xml配置元素和属性的含义说明文档了,这个文档包含在ehcache.xml的注释中!
ehcache.xml : http://ehcache.org/ehcache.xml
ehcache.xsd : http://ehcache.org/ehcache.xsd
ehcache配置文件的根元素是ehcahe
ehcac
- java.lang.ClassNotFoundException: org.springframework.web.context.ContextLoaderL
白糖_
javaeclipsespringtomcatWeb
今天学习spring+cxf的时候遇到一个问题:在web.xml中配置了spring的上下文监听器:
<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>
随后启动
- angular.element
boyitech
AngularJSAngularJS APIangular.element
angular.element
描述: 包裹着一部分DOM element或者是HTML字符串,把它作为一个jQuery元素来处理。(类似于jQuery的选择器啦) 如果jQuery被引入了,则angular.element就可以看作是jQuery选择器,选择的对象可以使用jQuery的函数;如果jQuery不可用,angular.e
- java-给定两个已排序序列,找出共同的元素。
bylijinnan
java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class CommonItemInTwoSortedArray {
/**
* 题目:给定两个已排序序列,找出共同的元素。
* 1.定义两个指针分别指向序列的开始。
* 如果指向的两个元素
- sftp 异常,有遇到的吗?求解
Chen.H
javajcraftauthjschjschexception
com.jcraft.jsch.JSchException: Auth cancel
at com.jcraft.jsch.Session.connect(Session.java:460)
at com.jcraft.jsch.Session.connect(Session.java:154)
at cn.vivame.util.ftp.SftpServerAccess.connec
- [生物智能与人工智能]神经元中的电化学结构代表什么?
comsci
人工智能
我这里做一个大胆的猜想,生物神经网络中的神经元中包含着一些化学和类似电路的结构,这些结构通常用来扮演类似我们在拓扑分析系统中的节点嵌入方程一样,使得我们的神经网络产生智能判断的能力,而这些嵌入到节点中的方程同时也扮演着"经验"的角色....
我们可以尝试一下...在某些神经
- 通过LAC和CID获取经纬度信息
dai_lm
laccid
方法1:
用浏览器打开http://www.minigps.net/cellsearch.html,然后输入lac和cid信息(mcc和mnc可以填0),如果数据正确就可以获得相应的经纬度
方法2:
发送HTTP请求到http://www.open-electronics.org/celltrack/cell.php?hex=0&lac=<lac>&cid=&
- JAVA的困难分析
datamachine
java
前段时间转了一篇SQL的文章(http://datamachine.iteye.com/blog/1971896),文章不复杂,但思想深刻,就顺便思考了一下java的不足,当砖头丢出来,希望引点和田玉。
-----------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第二课
dcj3sjt126com
englishword
money 钱
paper 纸
speak 讲,说
tell 告诉
remember 记得,想起
knock 敲,击,打
question 问题
number 数字,号码
learn 学会,学习
street 街道
carry 搬运,携带
send 发送,邮寄,发射
must 必须
light 灯,光线,轻的
front
- linux下面没有tree命令
dcj3sjt126com
linux
centos p安装
yum -y install tree
mac os安装
brew install tree
首先来看tree的用法
tree 中文解释:tree
功能说明:以树状图列出目录的内容。
语 法:tree [-aACdDfFgilnNpqstux][-I <范本样式>][-P <范本样式
- Map迭代方式,Map迭代,Map循环
蕃薯耀
Map循环Map迭代Map迭代方式
Map迭代方式,Map迭代,Map循环
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年
- Spring Cache注解+Redis
hanqunfeng
spring
Spring3.1 Cache注解
依赖jar包:
<!-- redis -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redis</artifactId>
- Guava中针对集合的 filter和过滤功能
jackyrong
filter
在guava库中,自带了过滤器(filter)的功能,可以用来对collection 进行过滤,先看例子:
@Test
public void whenFilterWithIterables_thenFiltered() {
List<String> names = Lists.newArrayList("John"
- 学习编程那点事
lampcy
编程androidPHPhtml5
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- 架构师之流处理---------bytebuffer的mark,limit和flip
nannan408
ByteBuffer
1.前言。
如题,limit其实就是可以读取的字节长度的意思,flip是清空的意思,mark是标记的意思 。
2.例子.
例子代码:
String str = "helloWorld";
ByteBuffer buff = ByteBuffer.wrap(str.getBytes());
Sy
- org.apache.el.parser.ParseException: Encountered " ":" ": "" at line 1, column 1
Everyday都不同
$转义el表达式
最近在做Highcharts的过程中,在写js时,出现了以下异常:
严重: Servlet.service() for servlet jsp threw exception
org.apache.el.parser.ParseException: Encountered " ":" ": "" at line 1,
- 用Java实现发送邮件到163
tntxia
java实现
/*
在java版经常看到有人问如何用javamail发送邮件?如何接收邮件?如何访问多个文件夹等。问题零散,而历史的回复早已经淹没在问题的海洋之中。
本人之前所做过一个java项目,其中包含有WebMail功能,当初为用java实现而对javamail摸索了一段时间,总算有点收获。看到论坛中的经常有此方面的问题,因此把我的一些经验帖出来,希望对大家有些帮助。
此篇仅介绍用
- 探索实体类存在的真正意义
java小叶檀
POJO
一. 实体类简述
实体类其实就是俗称的POJO,这种类一般不实现特殊框架下的接口,在程序中仅作为数据容器用来持久化存储数据用的
POJO(Plain Old Java Objects)简单的Java对象
它的一般格式就是
public class A{
private String id;
public Str