- 数论学习1(欧几里德算法+唯一分解定理+埃氏筛+拓展欧几里德+同余与模算术)
new出新对象!
数学数算法学习
目录1.唯一分解定理2.欧几里德算法(求最大公约数)3.求最小公倍数4.埃氏筛5.拓展欧几里德算法(1)证明一下线性方程组的正数的最小值是多少,(2)如何通过裴蜀定理退出拓展欧几里得算法(贝祖定理)6.同余与模算术(1)取模运算操作加法取模运算减法取模运算乘法取模运算(2)特殊的取模操作大整数取模幂取模(3)同余式,乘法逆元,费马小定理今天也是小小的开始学习数论方面的知识了,首先数论的入门章节必然
- python logistic regression_机器学习算法与Python实践之逻辑回归(Logistic Regression)
weixin_39702649
pythonlogisticregression
机器学习算法与Python实践这个系列主要是参考下载地址:https://bbs.pinggu.org/thread-2256090-1-1.html一、逻辑回归(LogisticRegression)Logisticregression(逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性。之前在经典之作《数学之美》中也看到了它用于广告预测,也就是根据某广告被用户点击的可能性,把
- 排列数+时间戳+逆元取模
wniuniu_
算法算法
前言:这个题目是真的难,不会做,看了题解才发现是咋回事题目地址最主要的就是为啥是除以3,c之前需要完成a和b,d和e对我们的答案没有影响,所以我们要除以A(3,3),但是a和b的排列没有要求,所以乘以A(2,2)抵消得到3#includeusingi64=longlong;usingu64=unsignedlonglong;consti64mod=1e9+7;i64ksm(i64a,i64b){i
- 2023-07-28
2023梦启支教团张耀文
感悟数学之美,分享数独之乐——中国矿业大学梦启支教团开展趣味数独课程7月27日下午3时,中国矿业大学梦启支教团在贵州省金沙县第九小学(金沙县彩虹小学)开展“兴趣爱好培养班”系列课程,本次课程讲述趣味数独。该课程旨在让学生们教会孩子们数独的技巧方法,引导学生喜欢数独、爱上数独。课程由梦启支教团成员于子文主讲,梦启三班全员参加。课程伊始,于子文老师首先介绍欧拉研究的拉丁方阵,向学生们讲述数独的起源,激
- 牛客小白月赛61-E-排队
LonelyGhosts
算法
很好的一道题啊,学到了不少东西!!!!首先是一个结论逆序对总数=n!/2*不相等的数字对数(1)不相等的数字对数怎么求结论不相等的数字对数=C(n,2)-∑C(2,cnt(i))(i数字的出现次数)(2)n!/2怎么处理,有取模的除运算怎么处理???这块一直不会,今天一学才发现,就是之前学过的乘法逆元,学过就忘,不愧是我(doge这里只说怎么处理,证明之类的不写了a/b%mod的情况,可以求b的乘
- Acwing-基础算法课笔记之数学知识(中国剩余定理)
不会敲代码的狗
Acwing基础算法课笔记算法笔记线性代数
Acwing-基础算法课笔记之数学知识(中国剩余定理)一、中国剩余定理1、概述1、表述一2、表述二2、辗转相除法求逆元的回顾3、模拟过程(1)例题一(2)例题二4、闫氏思想5、求最小正整数解二、扩展知识一、中国剩余定理1、概述{x≡a1(modm1)x≡a2(modm2)x≡a3(modm3)⋮x≡an(modmn)\begin{cases}x\equiva_1(modm_1)\\x\equiva
- 数学之美(43)——由勾股定理与相似进入玄幻的图形转换世界
刷牙喝凉白开
今天,我们直接进入正题,如果给一个三角形,怎么作出与它面积相等的正方形?有的小伙伴就很吃惊,这还不简单吗?求出三角形的面积S△,再求得S△的算术平方根,不就是正方形的边长了吗?可问题是:如果三角形的性质是任意的,三边长度未知,无法通过测量的方法来求得面积,而且作图只能用尺规呢?其实,这类问题我们借助勾股定理及相似里的射影定理就可以圆满解决。基础概念.1勾股定理直角三角形斜边的平方等于两直角边的平方
- 预处理组合数和逆元o(n)
顾客言
java算法数据结构
intfact[N],infact[N];intqpow(inta,intb){intres=1;while(b){if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}returnres;}voidinit(){fact[0]=1;for(inti=1;i=1;i--)infact[i-1]=infact[i]*i%mod;}intC(intn,intm){returnfa
- 扩展欧几里得算法 exgcd 求逆元(适用于模数不为质数的情况)
Waldeinsamkeit41
算法
原理不打算自己懂。。。代码ullexgcd(ulla,ullb,ull&x,ull&y)//扩展欧几里得求模b意义下a的逆元//返回的d是a和b的最大公约数,而最终的x是a在模b意义下的逆元{if(b==0){x=1;y=0;returna;}ulld=exgcd(b,a%b,y,x);y=y-a/b*x;returnd;}exgcd(a,b,x,y);//注意最终x可能返回负数,要加上b变成正数
- 万物皆数
学生的陪伴者
爱因斯坦说过,宇宙最不可理解之处,就是它居然是可以被理解的。本书将告诉你,那些看似不可理解的万物背后,隐藏着一把开启理解之门的钥匙。这把钥匙,就是数学!本书将引领我们穿越回史前时代、四大文明古国、欧洲中世纪与文艺复兴时期,也会带领我们漫步于巴黎卢浮宫与发现宫。作者巧妙地运用历史学的方法,构建了无数历史或现今的场景,将数学从亭台楼阁之上带入我们的日常生活,将数学之美化为一篇篇优美的文字,娓娓道来。阅
- [算法学习] 逆元与欧拉降幂
Waldeinsamkeit41
学习
费马小定理两个条件:p为质数a与p互质逆元如果要求x^-1modp,用快速幂求qmi(x,p-2)就好欧拉函数思路:找到因数i,phi/i*(i-1),除干净,判断最后的n欧拉降幂欧拉定理应用示例m!是一个非常大的数,所以要用欧拉降幂,不是把m!算出来后取模,而是计算的时候取模。
- 2021-07-30
RX-0493
学了一会数论,好难1.乘法逆元:a/b%p,若a/b在进行取模运算时,会出现精度问题,而且模运算对除法不适用,(没有分配律,大概就这意思)而求出乘法逆元后,可以把原式变为a*x%p的形式,且值不变。a*x≡1(modp)中,a,p为已知量,则x为a的乘法逆元。例题:乘法逆元设p=k*i+r,(1usingnamespacestd;constintN=20000530;intn,p,inv[N];i
- 书单
boo_
已完成:2020年5月《微服务设计》(5.2)《redis开发与运维》(5.4)2019年《我们台湾这些年》《GoWeb编程》(12.14)《Go高级编程》(1.4)《Go语言实战》《MySQL入门很简单》《MySQL必知必会》《编码:隐匿在计算机软硬件背后的语言》《程序员修炼之道-从小工到专家》《树莓派开始,玩转Linux》《数学之美》·吴军《浪潮之巅》·吴军阅读中《Go程序设计语言》(2.3.
- P6046 纯粹容器
DBWG
洛谷算法
纯粹容器-洛谷首先先看几个通用的知识点:1.费马小定理+快速幂求逆元(求倒数)当mod为质数的时候可以使用费马小定理llksm(intx,inty){if(x==1)return1;llres=1,base=x;while(y){if(y&1)res=(res*base)%mod;base=(base*base)%mod;y>>=1;}returnres;}intinv(intaim)//inve
- 马云云栖大会演讲
猎豹最快
有很多东西想讲,但是被数学家们这么一搞(前几分钟,数学家门登台展示数学之美),我心里发虚,就不一定讲得下去。昨天晚上和数学家们进行了交流。我非常后悔没有进入数学世界,当然也很幸运没进入那个世界,因为我进去很有可能被赶出来。毫无疑问,没有数学为基础,科学就可能没有基础,没有科学就没有这些技术。默默无闻在背后为人类社会作出巨大贡献的人才是真正的英雄。云栖大会已经第九届,应该是第十年的第九届。参加人数是
- 打起精神去天马行空吧~!~
零月浅浅
自从决定参加注册电气工程师的考试,浅浅终于迈上文理艺兼修的终极道路,这时候为了给自己洗脑“数学之美”、“科学之美”和多元思维,我特意买来《达芬奇传》《穷查理宝典》和《爱因斯坦传》书房镇宅,还放言如果明年能过就买一本《几何原本》作为客厅镇宅之宝,毕竟洗脑其实就是通过反复循环来构建神经回路,晚洗不如早洗,别人洗不如自己洗,应付考试洗不如赋予伟大意义洗,对吧~!在这个过程中有几点心得体会,我觉得可以跟朋
- 倒计时59天
算法怎么那么难啊
算法c++
(来源:b站左程云up099)一:求逆元:1)要保证a可以整除b2)要保证mod的是一个质数3)b和mod互质题目2)3)一般都满足,主要是1)方法:如求1.(10/5)%modmod=35的逆元其实就等于(5的mod-2次方)%mod=5%3=2;然后用10%mod=1,结果就等于(分母的逆元乘以分子mod后的值)%mod,即(2*1)%3=2!2.(18/6)%modmod=5先求6的逆元,就
- 1.25商学院-工具书籍
城市格调刘姣
对我印象深刻的是第三本《数学之美》,前几天我在研究数据做表格,什么公式、求和、函数等等的都是关于数学方面的,现在才觉得原来上学时语数外都是到长大了到了一定层次才能用到的东西,小时候没学好的,现在又要补课了。
- 逆元 与 扩展欧几里得(超级详细,c++)
海风许愿
Acm算法c++c++开发语言算法
逆元与扩展欧几里得算法(veryimportant)^-^点个赞再走吧~~^-^点个赞再走吧~~^-^点个赞再走吧~~欧几里得定理:给定任意a,b,一定存在x,y使得ax+by=gcd(a,b)公式:ax+by=gcd(a,b);1)利用欧几里得的过程给定n,对正整数ai,bi,对于每对数,求出一组xi,yi,使其满足ai*xi+bi*yi=gcd(ai,bi)推导:ax+by=d=>bx+(a%
- 组合数 与卡特兰数
海风许愿
Acm算法c++算法数据结构c++
组合数与卡特兰数1a,b比较小时采用预处理方法,提前将所有的组合数都算出来,到时候直接查表采用的公式是C(a,b)=C(a-1,b)+C(a-1,b-1)原题链接:885.求组合数I-AcWing题库核心代码:for(inti=0;i=1e5时,显然已经不能直接开二维数组打表了,这样会爆数组但是我们可以开两个一维数组,一个存取i的阶乘,一个存取i阶乘的逆元我们可以直接从定义出发C(a,b)=a!/
- 工具书籍
w小郭
本课中着重讲到了数学之美。都说上帝本就是程序员,这说明世间万事万物都有其自己的既有规律,而程序使用的基本工具就是数学。平时在管理过程中,任何举措无不是建立在数学知识之上的。所有重大决策都是以数据分析作为依据,所有机制均是以数据作为平台支持的。管理中如果没有数据,就不是更改的抉择。如果一个管理机制不是建立在数据基础上的,只凭借感性而为,则很难持久或精确。
- [51Nod]1013 3的幂的和
闭门造折
很有代表性的一道题,用到了快速幂和逆元题干求:3^0+3^1+...+3^(N)mod1000000007快速幂参考资料《基础算法—快速幂详解》快速幂的原理是,计算m^k次方的时候,通过k的二进制值将k拆分成2^i+2^j+...,通过不断地平方运算快速计算m的k次方逆元这个真是个奇妙的东西以1013题为例,整个证明过程如下:原式=[1-3^(n+1)]/(1-3)=[3^(n+1)-1]/2[1
- 分享|熵增定律:让无数迷途者顿悟的终极定律
西西弗斯推石头_一念及春
如果物理学只能留一条定律,我会留熵增定律。说这句话的人叫吴国盛,清华大学的科学史系主任。另外一位吴姓牛人,毕业于清华大学及约翰霍普金斯大学,写了《浪潮之巅》《数学之美》等十多本畅销书的跨界达人吴军,也说过类似的话,他说如果地球毁灭了,我们怎么能够在一张名片上写下地球文明的全部精髓,让其它文明知道我们曾有过这个文明呢?吴博士给出的答案是三个公式:1+1=2(代表了数学文明)E=mc²(爱因斯坦的质能
- 【算法竞赛模板】质因子、质数、约数、余数、快速幂(数论大全)
Ac君
算法学习c++数论质数约数蓝桥杯
常用数论的算法模板一、质因子二、质数三、约数①试除法求一个数所有约数②求约数个数③求约数和④求最大公约数gcd辗转相除扩展欧几里得反素数同余定理费马小定理(快速幂求逆元)四、余数五、组合数①DP求组合数②逆元求组合数③卢卡斯定理求组合数④高精度大数求组合数六、快速幂 苟蒻发文,若有任何不足、错误的地方欢迎大佬们来斧正~本苟蒻不胜感激(>人<;)一、质因子 定义:指能整除给定正整数的质数 性质
- 数学之美,无与伦比
過期作廢
Day144廢銅爛鐵听《万物皆数》:这是一本让不爱数学的人爱上数学,让热爱数学的人更加热爱的好书。图片发自App学生时代,最大的爱好就是做数学证明题,运用一系列的定理、公式和公理,经过N步的解题过程,最终终于完成证明,是一件多么美妙的事。欧几里得、莱布尼茨,耳熟能详;美丽而又精致的几何图形,二次函数的抛物线……真的无与伦比。所以,后来选择岗位时,毫不犹豫地定了数学。虽然我感性,但并不妨碍我对有着极
- 线段树简单使用 P4588 数学计算 总结
why_not_fly
算法
传送门https://www.luogu.com.cn/problem/P4588心路历程一开始确实没想到能切换成线段树,毕竟它一无区间二无线段,我第一眼看到题以为是一个大大大模拟,但是这里不能用逆元(并不互质)于是,运用一点思维,我们发现可以把一个区间全设成1(大小就是查询次数),每一次修改就修改那个点,第二种除法就将那个点化成1,这样维护一个区间,区间根节点的值就是答案当然我一开并没马上反应过
- 离散数学_代数系统
先生先生393
考研
代数系统目录代数系统1.1二元运算及其性质1.2二元运算中的特殊元素幂等元幺元(单位元恒等元)零元逆元可消去元1.3代数系统的概念1.4代数系统的性质编辑编辑编辑2.1半群2.2群与子群2.3子群及其证明子群的陪集2.4循环群:生成元编辑编辑循环群的子群1.1二元运算及其性质性质在这里减法不封闭,因为减法可能得出负数通过看是否以主对角线元素对称1.2二元运算中的特殊元素幂等元幺元(单位元恒等元)零
- 《数学之美》--第一章:文字和语言 vs 数字和信息
mantch
PDF下载第一章文字和语言vs数字和信息数字、文字和自然语言一样,都是信息的载体,它们之间原本有着天然的联系。语言和数学的产生都是为了同一个目的—记录和传播信息。但是,直到半个多世纪前香农博士提出信息论,人们才开始把数学和信息系统自觉地联系起来。信息:自然语言就是信息的一种,其实从最初的动物世界,再到以人类为主导的世界,都是在传播消息,哪怕是发出怪叫声也是一样的。这跟现在的信息传播模型是一样的。i
- 卢卡斯定理/Lucas定理板子 组合数板子
DBWG
板子算法数据结构
a是阶乘数组,提前处理好,处理到模数应该够的。ksm快速幂C是组合数函数,ksm是用来费马小定理求逆元(即倒数)。就是组合数公式,n的阶乘除以(m的阶乘和n-m的阶乘)。Lucas卢卡斯定理-OIWiki(oi-wiki.org)lla[100005];llksm(intx,inty,intmod){//因为数据范围很大容易爆掉,所以就要Fast_Powif(x==1)return1;llres=
- 拓展欧几里得法求逆元
DBWG
板子算法数据结构数学数论
板子:x即为最终答案,x可能为负数,加模数即可乘法逆元-OIWiki(oi-wiki.org)voidexgcd(inta,intb,int&x,int&y){if(b==0){x=1,y=0;return;}exgcd(b,a%b,y,x);y-=a/b*x;}使用:exgcd(a,n+1,x,y);//x就是逆元while(x<=0)x+=n+1;原理:最大公约数-OIWiki(oi-wiki
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi