- 探索数据的奥秘:一份深入浅出的数据分析入门指南
uncle_ll
数据库数据分析数据挖掘入门
数据分析书籍推荐入门读物深入浅出数据分析啤酒与尿布数据之美数学之美数据分析ScipyandNumpyPythonforDataAnalysisBadDataHandbook集体智慧编程MachineLearninginAction机器学习实战BuildingMachineLearningSystemswithPython数据挖掘导论MachineLearningforHackers专业读物Intr
- 一个月读完6本书?这些烧脑神书,你能读完1本,就是学霸!
大数据v
导读:宅家有刷不完的剧、打不完的游戏?在线听课又走神了?一觉醒来假期又延长了?但假期虽漫长,终究有开学的那天。那么应该为迟来的开学做哪些准备?停课不停学!近日,著名经济学者薛兆丰在得到app上发起“一个月读完6本书”的挑战。但数据叔今天推荐的这些书,一个月读完6本真的有难度。只要读完1本,你这个月就没有虚度,一定收获满满;只要读完1本,你就打败了全国99%的宅家小伙伴!1数据挖掘导论(原书第2版)
- 《数据挖掘导论》学习 | 第九章 聚类分析:其他问题与算法
蕴玉山辉,怀珠川媚
数据挖掘导论数据科学数据挖掘
目录第九章聚类分析:其他问题与算法数据、簇和聚类算法的特性比较K均值和DBSCAN数据特性簇特性聚类算法的一般特性基于原型的聚类模糊聚类使用混合模型的聚类自组织映射基于密度的聚类基于网格的聚类子空间聚类基于图的聚类稀疏化最小生成树聚类OPOSSUM:使用METIS的稀疏相似度最优划分Chameleon:使用动态建模的层次聚类共享最近邻相似度Jarvis-Patrick聚类算法SNN密度可伸缩的聚类
- 数据挖掘导论 第4章 分类:基本概念、决策树与模型评估
??yy
数据结构与算法人工智能
第4章分类:基本概念、决策树与模型评估分类(classification):分类任务就是通过学习得到一个目标函数(targetfunction)f,把每个属性集x映射到一个余弦定义的类标号y。目标函数也称为分类模型(classificationmodel)。属性可以是离散的或者连续的,但类标号必须是离散的,这正是分类与回归(regression)的关键特征。回归是一种预测建模任务,其中目标属性y是
- 数据挖掘导论课后习题答案-第一章
洋子_
数据挖掘数据挖掘数据库人工智能数据挖掘导论数据挖掘导论习题
IntroductionDiscusswhetherornoteachofthefollowingactivitiesisadataminingtask.(a)Dividingthecustomersofacompanyaccordingtotheirgender.No.Thisisasimpledatabasequery.(b)Dividingthecustomersofacompanyacco
- 数据挖掘导论学习笔记(四)
进阶中的程序猿
数据挖掘导论基础知识数据挖掘
第五章分类:其他技术基于规则的分类器:每一个分类规则可以表示为如下形式:ri:(条件i)---->yi规则:(条件i)规则前件或前提:规则左边规则后件:规则右边,包含预测类yi分类规则的质量衡量:给定数据集D和分类规则r:A---->y(1)覆盖率:D中触发规则r的记录所占比例(2)准群率或置信因子:触发r的记录中类标号等于y的记录所占比例。基于规则的分类器的工作原理:确保分类器能对记录做出可靠的
- 《数据挖掘导论》学习笔记:第1-2章
bakalaka
数据挖掘理论
本文转载自:https://blog.csdn.net/u013232035/article/details/48281659本文主要是在学习《数据挖掘导论(完整版)》中的学习笔记,主要用来梳理思路,并没有多少思考。第1章绪论1.1什么是数据挖掘KDD:KnowledgeDiscoveryinDatabase过程如下:CreatedwithRaphaël2.1.0输入数据数据预处理数据挖掘后处理信
- 《数据挖掘导论》归纳笔记
oh panda
数据挖掘笔记人工智能
目录第一章绪论第二章数据2.0引言2.0.1数据类型2.0.2数据的质量2.0.3使数据适合挖掘的预处理步骤2.0.4根据数据联系分析数据2.1数据类型2.1.1属性与度量2.1.2数据集的类型2.2数据质量2.2.1测量和数据收集问题2.2.2关于应用的问题2.3数据预处理2.3.1聚集2.3.2抽样2.3.3维归约2.3.4特征子集选择2.3.5特征创建2.3.6离散化和二元化2.3.7变量变
- 《数据挖掘导论》学习笔记
小乖的晴天
数据挖掘
写在前面:粗体字为书中定义,红色字体为笔者认为的重点词。【第一章:绪论】1.数据挖掘:在大型数据存储库中,自动地发现有用信息的过程。2.数据预处理步骤:融合来自多个数据源的数据,清洗数据以及消除噪声和重复的观测值,选择与当前数据挖掘任务相关的记录和特征。3.数据挖掘要解决的问题:可伸缩,高维性,异种数据和复杂数据,数据的所有权和分布,非传统的分析。4.数据挖掘任务:预测任务,描述任务。四种主要数据
- 《数据挖掘导论》学习笔记(第1-2章)
schdut
数据挖掘默认数据挖掘数据挖掘导论
《数据挖掘导论》学习笔记(第1-2章)转载:《数据挖掘导论》学习笔记(第1-2章)——Wr_Ran第1章绪论1.1什么是数据挖掘KDD:KnowledgeDiscoveryinDatabase过程如下:1.输入数据2.数据预处理3.数据挖掘4.后处理5.得到信息其中,数据预处理包括如下几部分:特征选择维归约规范化选择数据子集后处理包括如下及部分:模式过滤可视化模式表达1.2数据挖掘要解决的问题可伸
- 数据挖掘导论学习笔记 第六章 关联分析:基本概念和算法
李烟云
数据挖掘算法fp树结构
6.1问题定义关联分析(associationanalysis)用于发现隐藏在大型数据集中有意义的联系,所发现的联系可以用关联规则或者频繁项集的形式表示项集和支持度计数以购物篮数据集为例TID面包牛奶尿布…1110…2101……5111…令I={i1,i2,…,id}I=\{i_1,i_2,\ldots,i_d\}I={i1,i2,…,id}表示所有项的集合,T={t1,…,tN}T=\{t_1,
- 数据挖掘导论学习笔记1(第1 、2章)
蔬菜院院长
数据挖掘导论数据挖掘学习笔记
参考:https://blog.csdn.net/u013232035/article/details/48281659?spm=1001.2014.3001.5506和《数据挖掘导论》学习笔记(第1-2章)_时机性样本_schdut的博客-CSDN博客第1章绪论数据挖掘是一种技术,它将传统的数据分析方法与处理大量数据的复杂算法相结合。数据分析技术的应用:商务:借助POS(销售点)数据收集技术【条
- 数据挖掘导论 N个考试常用的问题
山野行者syh
数据挖掘kdd决策树神经网络
目录第一章认识数据挖掘1、什么是数据中“隐含”的信息2、数据挖掘主要研究什么内容?它和数据库、数据查询、专家系统、数理统计有什么不同?3、辨析:数据、信息、知识4、有指导和无指导学习的联系和区别是什么5、如何理解数据挖掘的不同角度的定义6、数据挖掘与专家系统的联系和区别是什么?7、数据挖掘工作的基本流程是什么?8、数据挖掘的作用作业1第二章基本数据挖掘技术1、决策树算法的关键技术2、选择最能区别数
- 数据挖掘导论——支持向量机
PolarBearWYY
明天就要讲课了,总觉得,还是拿代码说事儿,最靠谱,最有说服力https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html经常用到sklearn中的SVC函数,这里把文档中的参数翻译了一些,以备不时之需。本身这个函数也是基于libsvm实现的,所以在参数设置上有很多相似的地方。(PS:libsvm中的二次规划问题的解决算
- 推荐算法-协同过滤1 概述
limus
协同过滤用户一起和网站互动,使得自己的推荐列表不断过滤掉不感兴趣的物品,从而越来越满足自己的要求。用户行为用户行为举例当当网浏览“”数据挖掘导论“,推荐“还买过”web数据挖掘用户行为的提取从日志中挖掘会话日志->记录查询+返回结果+点击。评分系统:视频的喜欢/不喜欢和豆瓣评论的5级用户行为的存储hadoopHive,Googledremel,hadoopdrill用户行为的特点用户越活跃,越倾向
- 《数据挖掘导论》CH4分类:基本概念、决策树与模型评估-读书笔记
Schnell
分类任务就是确定对象属于哪个预定义的目标类(店铺病历表,款式判断)4.1预备知识分类计数非常适合预测或描述二元或标称类型的数据集,但是分类技术不考虑隐含的序数关系。4.2解决分类问题的一般方法(方法论)P91(图4-3)分类技术是一种根据输入数据集建立分类模型的系统方法。分类法包括:决策树分类法,基于规则的分类法,神经网络,支持向量机和朴素贝叶斯分类法。分类模型能够很好的拟合输入数据中类标号和属性
- 在数据分析、挖掘方面,有哪些好书值得推荐?
python大数据分析
最近看到有人在问,在数据分析、挖掘方面,有哪些好书值得推荐?推荐三本书,分别是统计、编程、算法方向的核心教程,非常适合新手去看。StatisticsforBusinessandEconomics-商务与经济统计PythonforDataAnalysis-利用Python进行数据分析IntroductiontoDataMining-数据挖掘导论如果你是学R的,可以再加一本R语言实战为什么选这三本书呢
- 《数据挖掘导论》CH3探索数据-读书笔记
Schnell
3.2数据汇总频率,众数,百分位数,位置度量(均值和中位数),散布度量(极差和方差),多元汇总统计(相关矩阵)3.3可视化3.4OLAP和多维数据分析创建按月和按产品类别描述特定地点的销售活动汇总3.4.2多维数据:一般情况3.4.3分析多维数据1.数据立方体:计算聚集量从多维角度看待数据的主要动机就是需要以多种方式聚集数据2.维归约和转轴聚集可以认为是一种降维-转轴-切片和切块-****上卷和下
- 《数据挖掘导论》CH5.3贝叶斯分类器
Schnell
背景:属性集和类变量之间的关系是不确定的,其一,噪声数据的干扰;其二,出现某些影响分类的因素没有包含在属性集中。因此,出现一种对属性集和类变量的概率关系建模的方法。贝叶斯定理是把类的先验知识和从数据中收集的新证据相结合的统计原理。它可以通过先验概率、类条件概率和证据来表示后验概率。(5-11)对于类条件概率的估算有两种方法:5.3.3朴素贝叶斯分类器1.前提:条件独立性:属性集的属性(条件)与类之
- 数据挖掘导论 笔记3
ccyyawsl
笔记数据挖掘
给定一个无序的、分类的值的集合,为了进一步刻画值的性质,除计算特定数据集中每个值出现的频率外没有多少的事情可做。给定一个在{1,…Vi,…Vk}.上取值的分类属性x和m个对象的集合,值vi的频率定义为:分类属性的众数(mode)是具有最高频率的值。百分位数对于有序数据,考虑值集的百分位数(percentile)更有意义。具体地说,给定-一个有序的或连续的属性x和0与100之间的数p,第p个百分位数
- hash tree在apriori算法中如何进行支持度计数 数据挖掘导论(完整版)第六章
schdut
默认数据挖掘数据挖掘hashtree
好几天没写博客了,把之前在知乎上的一个回答搬了过来。题目链接:hashtree在apriori算法中是如何进行支持度计数?我的回答如下:基本上看懂了,所以来答一发。我认为这本书写得很好,数据挖掘入门首选。P211中图6-9就是用Hash方法枚举事务t={1,2,3,5,6}的3-项集,这个图应该很好理解。P212中图6-11其实是作者举的一个例子:此图为一个Hash树,树中结点为候选项集,树中结点
- 推荐算法--基于物品的协同过滤算法
千寻~
机器学习推荐算法基于物品的协同过滤算法
“无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。”ItemCF:ItemCollaborationFilter,基于物品的协同过滤算法核心思想:给用户推荐那些和他们之前喜欢的物品相似的物品。比如,用户A之前买过《数据挖掘导论》,该算法会根据此行为给你推荐《机器学习》,但是Ite
- 《数据挖掘导论》CH5.1基于规则的分类器-读书笔记(2)
Schnell
5.1基于规则的分类器形式:规则-预测类if-then(和决策树区别,决策树规则有总分,规则分类是平行的,但是它俩可以转换)5.1.1原理:1.互斥规则:一条记录不能出现多个预测类,避免多个类出现的方法有:有序规则(规则按优先降序排列)和无序规则(产生多个预测类,进行加权计票)2.穷举规则:每天记录都应有预测类,不行就整一个其他类5.1.2规则的排序方案:1.基于规则排序:秩越前,越容易被解释,秩
- 【某航】k-means聚类t-sne可视化——数据挖掘导论
农夫小田
课程学习聚类机器学习数据分析python
代码链接:github代码1.任务要求分析Clustering_ALS数据集,对疾病类型进行聚类分析。2.读取数据:ALS.csv2223rows×101columns3.数据分析与可视化(1)数值型数据分布统计:(data_distribute.png)对每一列数据绘制直方图(质量分布图),它是表示数据分布情况的一种主要工具。其中y轴是密度,而不是概率。通过对每一类列数据做数据分布的统计,可以看
- 学习笔记(01):以性别预测为例,谈谈数据挖掘中常见的分类算法-数据挖掘的基本流程和常见的分类算法...
teth
研发管理数据挖掘深度学习大数据云计算/大数据
立即学习:https://edu.csdn.net/course/play/1948/30060?utm_source=blogtoedu一.数据挖掘基础数据挖掘:用各种方法(统计学、机器学习、爬虫)来解决各种实际问题;机器学习:算法层面数据挖掘工程师:程序员入门:通俗;1.PCI(集体智慧编程)2.写个程序....(直接下载)3.数学之美(纸质版无拓展阅读)正统:1机器.数据挖掘导论2.数据挖掘
- 数据挖掘导论阅读笔记第一章:绪论
つ天然呆¹³¹⁴
数据挖掘
数据挖掘导论(完整版)阅读笔记--第一章了解数据挖掘一、什么是数据挖掘二、了解KDD三、数据挖掘要解决的问题(了解即可)四、数据挖掘任务了解数据挖掘一、什么是数据挖掘数据挖掘是在大型数据存储库中,自动地发现有用信息的过程。数据挖掘技术用来探查大型数据库,发现先前未知的有用模式。这部分的重点在于区别:数据挖掘技术和其他信息检索任务例如:根据可赢利性划分公司客户答案:这不是数据挖掘任务,这是一个会计计
- 【数据挖掘——第一章 绪论】
一天雪
【数据挖掘】Python数据挖掘python
本文所使用的书籍为《数据挖掘导论》第一章绪论数据挖掘是一种技术,它将传统的数据分析方法与处理大量数据的复杂算法相结合。1.1什么是数据挖掘数据挖掘是在大型数据存储库中,自动地发现有用信息的过程。下面是数据库中知识发现(KDD)过程:数据预处理的目的是将未加工的输入数据转换成适合分析的形式。数据预处理设计的步骤包括融合来自多个数据源的数据,清洗数据以消除噪声和重复的观测值,选择与当前数据挖掘任务相关
- 《数据挖掘导论》绪论
Joutlier
数据挖掘导论笔记数据挖掘python
数据挖掘概念数据挖掘是在大型数据存储库中,自动的发现有用信息的过程,是数据库中知识发现(KDD)的一部分。数据挖掘任务预测建模:训练一个模型,使目标变量预测值与实际值之间的误差达到最小。有两类预测建模任务:分类,用于预测离散的目标变量;回归,用于预测连续的目标变量。如,根据花的特征预测花的种类。关联分析:用来发现描述数据中强关联特征的模式。如,用来发现顾客经常同时购买的商品。聚类分析:旨在发现紧密
- 多元线性回归,岭回归,lasso回归(具体代码(包括调用库代码和手写代码实现)+一点点心得)
Rainy maple
多元线性回归岭回归lasso回归机器学习python
最近数据挖掘导论老师布置了一项作业,主要就是线性回归的实现,笔者之前听过吴恩达的线性回归的网课,但一直没有进行代码的实现,这次正好相对系统的整理一下,方便各位同学的学习,也希望能够对其进行优化,优化的点最后再说。笔者写这篇博客也为了给实验报告打底稿,各位小伙伴2021年9月30号提交报告的时候别跟我实验报告一样啊,打回的话苦的是自己人,到时候我直接一波举报,哈哈哈。不过,发表这篇文章笔者是真的希望
- zscore标准化步骤_z-score的标准化究竟怎么弄?
weixin_39713335
zscore标准化步骤
在学习「数据挖掘导论」的数据预处理时,里面谈到了变量变换,我联想到了在基因表达量分析时的常见操作,例如FPKM,TPM,CPM,log对数变换。比如说在文章里面会见到如下的描述ThesizefactorofeachcellwascomputedusingapoolingstrategyimplementedintheRfunctioncomputeSumFactors.Normalizedcoun
- 开发者关心的那些事
圣子足道
ios游戏编程apple支付
我要在app里添加IAP,必须要注册自己的产品标识符(product identifiers)。产品标识符是什么?
产品标识符(Product Identifiers)是一串字符串,它用来识别你在应用内贩卖的每件商品。App Store用产品标识符来检索产品信息,标识符只能包含大小写字母(A-Z)、数字(0-9)、下划线(-)、以及圆点(.)。你可以任意排列这些元素,但我们建议你创建标识符时使用
- 负载均衡器技术Nginx和F5的优缺点对比
bijian1013
nginxF5
对于数据流量过大的网络中,往往单一设备无法承担,需要多台设备进行数据分流,而负载均衡器就是用来将数据分流到多台设备的一个转发器。
目前有许多不同的负载均衡技术用以满足不同的应用需求,如软/硬件负载均衡、本地/全局负载均衡、更高
- LeetCode[Math] - #9 Palindrome Number
Cwind
javaAlgorithm题解LeetCodeMath
原题链接:#9 Palindrome Number
要求:
判断一个整数是否是回文数,不要使用额外的存储空间
难度:简单
分析:
题目限制不允许使用额外的存储空间应指不允许使用O(n)的内存空间,O(1)的内存用于存储中间结果是可以接受的。于是考虑将该整型数反转,然后与原数字进行比较。
注:没有看到有关负数是否可以是回文数的明确结论,例如
- 画图板的基本实现
15700786134
画图板
要实现画图板的基本功能,除了在qq登陆界面中用到的组件和方法外,还需要添加鼠标监听器,和接口实现。
首先,需要显示一个JFrame界面:
public class DrameFrame extends JFrame { //显示
- linux的ps命令
被触发
linux
Linux中的ps命令是Process Status的缩写。ps命令用来列出系统中当前运行的那些进程。ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要动态的显示进程信息,就可以使用top命令。
要对进程进行监测和控制,首先必须要了解当前进程的情况,也就是需要查看当前进程,而 ps 命令就是最基本同时也是非常强大的进程查看命令。使用该命令可以确定有哪些进程正在运行
- Android 音乐播放器 下一曲 连续跳几首歌
肆无忌惮_
android
最近在写安卓音乐播放器的时候遇到个问题。在MediaPlayer播放结束时会回调
player.setOnCompletionListener(new OnCompletionListener() {
@Override
public void onCompletion(MediaPlayer mp) {
mp.reset();
Log.i("H
- java导出txt文件的例子
知了ing
javaservlet
代码很简单就一个servlet,如下:
package com.eastcom.servlet;
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.net.URLEncoder;
import java.sql.Connection;
import java.sql.Resu
- Scala stack试玩, 提高第三方依赖下载速度
矮蛋蛋
scalasbt
原文地址:
http://segmentfault.com/a/1190000002894524
sbt下载速度实在是惨不忍睹, 需要做些配置优化
下载typesafe离线包, 保存为ivy本地库
wget http://downloads.typesafe.com/typesafe-activator/1.3.4/typesafe-activator-1.3.4.zip
解压r
- phantomjs安装(linux,附带环境变量设置) ,以及casperjs安装。
alleni123
linuxspider
1. 首先从官网
http://phantomjs.org/下载phantomjs压缩包,解压缩到/root/phantomjs文件夹。
2. 安装依赖
sudo yum install fontconfig freetype libfreetype.so.6 libfontconfig.so.1 libstdc++.so.6
3. 配置环境变量
vi /etc/profil
- JAVA IO FileInputStream和FileOutputStream,字节流的打包输出
百合不是茶
java核心思想JAVA IO操作字节流
在程序设计语言中,数据的保存是基本,如果某程序语言不能保存数据那么该语言是不可能存在的,JAVA是当今最流行的面向对象设计语言之一,在保存数据中也有自己独特的一面,字节流和字符流
1,字节流是由字节构成的,字符流是由字符构成的 字节流和字符流都是继承的InputStream和OutPutStream ,java中两种最基本的就是字节流和字符流
类 FileInputStream
- Spring基础实例(依赖注入和控制反转)
bijian1013
spring
前提条件:在http://www.springsource.org/download网站上下载Spring框架,并将spring.jar、log4j-1.2.15.jar、commons-logging.jar加载至工程1.武器接口
package com.bijian.spring.base3;
public interface Weapon {
void kil
- HR看重的十大技能
bijian1013
提升能力HR成长
一个人掌握何种技能取决于他的兴趣、能力和聪明程度,也取决于他所能支配的资源以及制定的事业目标,拥有过硬技能的人有更多的工作机会。但是,由于经济发展前景不确定,掌握对你的事业有所帮助的技能显得尤为重要。以下是最受雇主欢迎的十种技能。 一、解决问题的能力 每天,我们都要在生活和工作中解决一些综合性的问题。那些能够发现问题、解决问题并迅速作出有效决
- 【Thrift一】Thrift编译安装
bit1129
thrift
什么是Thrift
The Apache Thrift software framework, for scalable cross-language services development, combines a software stack with a code generation engine to build services that work efficiently and s
- 【Avro三】Hadoop MapReduce读写Avro文件
bit1129
mapreduce
Avro是Doug Cutting(此人绝对是神一般的存在)牵头开发的。 开发之初就是围绕着完善Hadoop生态系统的数据处理而开展的(使用Avro作为Hadoop MapReduce需要处理数据序列化和反序列化的场景),因此Hadoop MapReduce集成Avro也就是自然而然的事情。
这个例子是一个简单的Hadoop MapReduce读取Avro格式的源文件进行计数统计,然后将计算结果
- nginx定制500,502,503,504页面
ronin47
nginx 错误显示
server {
listen 80;
error_page 500/500.html;
error_page 502/502.html;
error_page 503/503.html;
error_page 504/504.html;
location /test {return502;}}
配置很简单,和配
- java-1.二叉查找树转为双向链表
bylijinnan
二叉查找树
import java.util.ArrayList;
import java.util.List;
public class BSTreeToLinkedList {
/*
把二元查找树转变成排序的双向链表
题目:
输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。
要求不能创建任何新的结点,只调整指针的指向。
10
/ \
6 14
/ \
- Netty源码学习-HTTP-tunnel
bylijinnan
javanetty
Netty关于HTTP tunnel的说明:
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/socket/http/package-summary.html#package_description
这个说明有点太简略了
一个完整的例子在这里:
https://github.com/bylijinnan
- JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
coder_xpf
jqueryjsonmapval()
JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
数据库查询出来的map有一个字段为空
通过System.out.println()输出 JSONUtil.serialize(map): {"one":"1","two":"nul
- Hibernate缓存总结
cuishikuan
开源sshjavawebhibernate缓存三大框架
一、为什么要用Hibernate缓存?
Hibernate是一个持久层框架,经常访问物理数据库。
为了降低应用程序对物理数据源访问的频次,从而提高应用程序的运行性能。
缓存内的数据是对物理数据源中的数据的复制,应用程序在运行时从缓存读写数据,在特定的时刻或事件会同步缓存和物理数据源的数据。
二、Hibernate缓存原理是怎样的?
Hibernate缓存包括两大类:Hib
- CentOs6
dalan_123
centos
首先su - 切换到root下面1、首先要先安装GCC GCC-C++ Openssl等以来模块:yum -y install make gcc gcc-c++ kernel-devel m4 ncurses-devel openssl-devel2、再安装ncurses模块yum -y install ncurses-develyum install ncurses-devel3、下载Erang
- 10款用 jquery 实现滚动条至页面底端自动加载数据效果
dcj3sjt126com
JavaScript
无限滚动自动翻页可以说是web2.0时代的一项堪称伟大的技术,它让我们在浏览页面的时候只需要把滚动条拉到网页底部就能自动显示下一页的结果,改变了一直以来只能通过点击下一页来翻页这种常规做法。
无限滚动自动翻页技术的鼻祖是微博的先驱:推特(twitter),后来必应图片搜索、谷歌图片搜索、google reader、箱包批发网等纷纷抄袭了这一项技术,于是靠滚动浏览器滚动条
- ImageButton去边框&Button或者ImageButton的背景透明
dcj3sjt126com
imagebutton
在ImageButton中载入图片后,很多人会觉得有图片周围的白边会影响到美观,其实解决这个问题有两种方法
一种方法是将ImageButton的背景改为所需要的图片。如:android:background="@drawable/XXX"
第二种方法就是将ImageButton背景改为透明,这个方法更常用
在XML里;
<ImageBut
- JSP之c:foreach
eksliang
jspforearch
原文出自:http://www.cnblogs.com/draem0507/archive/2012/09/24/2699745.html
<c:forEach>标签用于通用数据循环,它有以下属性 属 性 描 述 是否必须 缺省值 items 进行循环的项目 否 无 begin 开始条件 否 0 end 结束条件 否 集合中的最后一个项目 step 步长 否 1
- Android实现主动连接蓝牙耳机
gqdy365
android
在Android程序中可以实现自动扫描蓝牙、配对蓝牙、建立数据通道。蓝牙分不同类型,这篇文字只讨论如何与蓝牙耳机连接。
大致可以分三步:
一、扫描蓝牙设备:
1、注册并监听广播:
BluetoothAdapter.ACTION_DISCOVERY_STARTED
BluetoothDevice.ACTION_FOUND
BluetoothAdapter.ACTION_DIS
- android学习轨迹之四:org.json.JSONException: No value for
hyz301
json
org.json.JSONException: No value for items
在JSON解析中会遇到一种错误,很常见的错误
06-21 12:19:08.714 2098-2127/com.jikexueyuan.secret I/System.out﹕ Result:{"status":1,"page":1,&
- 干货分享:从零开始学编程 系列汇总
justjavac
编程
程序员总爱重新发明轮子,于是做了要给轮子汇总。
从零开始写个编译器吧系列 (知乎专栏)
从零开始写一个简单的操作系统 (伯乐在线)
从零开始写JavaScript框架 (图灵社区)
从零开始写jQuery框架 (蓝色理想 )
从零开始nodejs系列文章 (粉丝日志)
从零开始编写网络游戏 
- jquery-autocomplete 使用手册
macroli
jqueryAjax脚本
jquery-autocomplete学习
一、用前必备
官方网站:http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
当前版本:1.1
需要JQuery版本:1.2.6
二、使用
<script src="./jquery-1.3.2.js" type="text/ja
- PLSQL-Developer或者Navicat等工具连接远程oracle数据库的详细配置以及数据库编码的修改
超声波
oracleplsql
在服务器上将Oracle安装好之后接下来要做的就是通过本地机器来远程连接服务器端的oracle数据库,常用的客户端连接工具就是PLSQL-Developer或者Navicat这些工具了。刚开始也是各种报错,什么TNS:no listener;TNS:lost connection;TNS:target hosts...花了一天的时间终于让PLSQL-Developer和Navicat等这些客户
- 数据仓库数据模型之:极限存储--历史拉链表
superlxw1234
极限存储数据仓库数据模型拉链历史表
在数据仓库的数据模型设计过程中,经常会遇到这样的需求:
1. 数据量比较大; 2. 表中的部分字段会被update,如用户的地址,产品的描述信息,订单的状态等等; 3. 需要查看某一个时间点或者时间段的历史快照信息,比如,查看某一个订单在历史某一个时间点的状态, 比如,查看某一个用户在过去某一段时间内,更新过几次等等; 4. 变化的比例和频率不是很大,比如,总共有10
- 10点睛Spring MVC4.1-全局异常处理
wiselyman
spring mvc
10.1 全局异常处理
使用@ControllerAdvice注解来实现全局异常处理;
使用@ControllerAdvice的属性缩小处理范围
10.2 演示
演示控制器
package com.wisely.web;
import org.springframework.stereotype.Controller;
import org.spring