序
本文主要研究一下flink的Broadcast State
实例
@Test
public void testBroadcastState() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource originStream = env.addSource(new RandomWordSource());
MapStateDescriptor descriptor = new MapStateDescriptor("dynamicConfig", BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.STRING_TYPE_INFO);
BroadcastStream> configStream = env.addSource(new DynamicConfigSource()).broadcast(descriptor);
BroadcastConnectedStream> connectStream = originStream.connect(configStream);
connectStream.process(new BroadcastProcessFunction, Void>() {
@Override
public void processElement(String value, ReadOnlyContext ctx, Collector out) throws Exception {
ReadOnlyBroadcastState config = ctx.getBroadcastState(descriptor);
String configValue = config.get("demoConfigKey");
//do some process base on the config
LOGGER.info("process value:{},config:{}",value,configValue);
}
@Override
public void processBroadcastElement(Tuple2 value, Context ctx, Collector out) throws Exception {
LOGGER.info("receive config item:{}",value);
//update state
ctx.getBroadcastState(descriptor).put(value.getField(0),value.getField(1));
}
});
env.execute("testBroadcastState");
}
public class DynamicConfigSource implements SourceFunction> {
private volatile boolean isRunning = true;
@Override
public void run(SourceContext> ctx) throws Exception {
long idx = 1;
while (isRunning){
ctx.collect(Tuple2.of("demoConfigKey","value" + idx));
idx++;
TimeUnit.SECONDS.sleep(10);
}
}
@Override
public void cancel() {
isRunning = false;
}
}
- 这里模拟了一个配置的source,定时去刷新配置,然后broadcast到每个task
MapStateDescriptor
flink-core-1.7.0-sources.jar!/org/apache/flink/api/common/state/MapStateDescriptor.java
@PublicEvolving
public class MapStateDescriptor extends StateDescriptor, Map> {
private static final long serialVersionUID = 1L;
/**
* Create a new {@code MapStateDescriptor} with the given name and the given type serializers.
*
* @param name The name of the {@code MapStateDescriptor}.
* @param keySerializer The type serializer for the keys in the state.
* @param valueSerializer The type serializer for the values in the state.
*/
public MapStateDescriptor(String name, TypeSerializer keySerializer, TypeSerializer valueSerializer) {
super(name, new MapSerializer<>(keySerializer, valueSerializer), null);
}
/**
* Create a new {@code MapStateDescriptor} with the given name and the given type information.
*
* @param name The name of the {@code MapStateDescriptor}.
* @param keyTypeInfo The type information for the keys in the state.
* @param valueTypeInfo The type information for the values in the state.
*/
public MapStateDescriptor(String name, TypeInformation keyTypeInfo, TypeInformation valueTypeInfo) {
super(name, new MapTypeInfo<>(keyTypeInfo, valueTypeInfo), null);
}
/**
* Create a new {@code MapStateDescriptor} with the given name and the given type information.
*
* If this constructor fails (because it is not possible to describe the type via a class),
* consider using the {@link #MapStateDescriptor(String, TypeInformation, TypeInformation)} constructor.
*
* @param name The name of the {@code MapStateDescriptor}.
* @param keyClass The class of the type of keys in the state.
* @param valueClass The class of the type of values in the state.
*/
public MapStateDescriptor(String name, Class keyClass, Class valueClass) {
super(name, new MapTypeInfo<>(keyClass, valueClass), null);
}
@Override
public Type getType() {
return Type.MAP;
}
/**
* Gets the serializer for the keys in the state.
*
* @return The serializer for the keys in the state.
*/
public TypeSerializer getKeySerializer() {
final TypeSerializer
- MapStateDescriptor继承了StateDescriptor,其中state为MapState类型,value为Map类型
DataStream.broadcast
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/DataStream.java
/**
* Sets the partitioning of the {@link DataStream} so that the output elements
* are broadcasted to every parallel instance of the next operation. In addition,
* it implicitly as many {@link org.apache.flink.api.common.state.BroadcastState broadcast states}
* as the specified descriptors which can be used to store the element of the stream.
*
* @param broadcastStateDescriptors the descriptors of the broadcast states to create.
* @return A {@link BroadcastStream} which can be used in the {@link #connect(BroadcastStream)} to
* create a {@link BroadcastConnectedStream} for further processing of the elements.
*/
@PublicEvolving
public BroadcastStream broadcast(final MapStateDescriptor, ?>... broadcastStateDescriptors) {
Preconditions.checkNotNull(broadcastStateDescriptors);
final DataStream broadcastStream = setConnectionType(new BroadcastPartitioner<>());
return new BroadcastStream<>(environment, broadcastStream, broadcastStateDescriptors);
}
/**
* Internal function for setting the partitioner for the DataStream.
*
* @param partitioner
* Partitioner to set.
* @return The modified DataStream.
*/
protected DataStream setConnectionType(StreamPartitioner partitioner) {
return new DataStream<>(this.getExecutionEnvironment(), new PartitionTransformation<>(this.getTransformation(), partitioner));
}
/**
* Sets the partitioning of the {@link DataStream} so that the output elements
* are broadcast to every parallel instance of the next operation.
*
* @return The DataStream with broadcast partitioning set.
*/
public DataStream broadcast() {
return setConnectionType(new BroadcastPartitioner());
}
- DataStream的broadcast方法,首先调用setConnectionType,然后使用MapStateDescriptor作为参数创建BroadcastStream返回;DataStream也有一个无参的broadcast方法,它直接调用setConnectionType返回DataStream
DataStream.connect
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/DataStream.java
/**
* Creates a new {@link ConnectedStreams} by connecting
* {@link DataStream} outputs of (possible) different types with each other.
* The DataStreams connected using this operator can be used with
* CoFunctions to apply joint transformations.
*
* @param dataStream
* The DataStream with which this stream will be connected.
* @return The {@link ConnectedStreams}.
*/
public ConnectedStreams connect(DataStream dataStream) {
return new ConnectedStreams<>(environment, this, dataStream);
}
/**
* Creates a new {@link BroadcastConnectedStream} by connecting the current
* {@link DataStream} or {@link KeyedStream} with a {@link BroadcastStream}.
*
* The latter can be created using the {@link #broadcast(MapStateDescriptor[])} method.
*
*
The resulting stream can be further processed using the {@code BroadcastConnectedStream.process(MyFunction)}
* method, where {@code MyFunction} can be either a
* {@link org.apache.flink.streaming.api.functions.co.KeyedBroadcastProcessFunction KeyedBroadcastProcessFunction}
* or a {@link org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction BroadcastProcessFunction}
* depending on the current stream being a {@link KeyedStream} or not.
*
* @param broadcastStream The broadcast stream with the broadcast state to be connected with this stream.
* @return The {@link BroadcastConnectedStream}.
*/
@PublicEvolving
public BroadcastConnectedStream connect(BroadcastStream broadcastStream) {
return new BroadcastConnectedStream<>(
environment,
this,
Preconditions.checkNotNull(broadcastStream),
broadcastStream.getBroadcastStateDescriptor());
}
- DataStream的connect方法参数可以是DataStream类型,也可以是BroadcastStream类型,如果是BroadcastStream类型则返回的是BroadcastConnectedStream,否则是普通的ConnectedStreams
BroadcastConnectedStream.process
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/BroadcastConnectedStream.java
@PublicEvolving
public class BroadcastConnectedStream {
private final StreamExecutionEnvironment environment;
private final DataStream inputStream1;
private final BroadcastStream inputStream2;
private final List> broadcastStateDescriptors;
protected BroadcastConnectedStream(
final StreamExecutionEnvironment env,
final DataStream input1,
final BroadcastStream input2,
final List> broadcastStateDescriptors) {
this.environment = requireNonNull(env);
this.inputStream1 = requireNonNull(input1);
this.inputStream2 = requireNonNull(input2);
this.broadcastStateDescriptors = requireNonNull(broadcastStateDescriptors);
}
public StreamExecutionEnvironment getExecutionEnvironment() {
return environment;
}
/**
* Returns the non-broadcast {@link DataStream}.
*
* @return The stream which, by convention, is not broadcasted.
*/
public DataStream getFirstInput() {
return inputStream1;
}
/**
* Returns the {@link BroadcastStream}.
*
* @return The stream which, by convention, is the broadcast one.
*/
public BroadcastStream getSecondInput() {
return inputStream2;
}
/**
* Gets the type of the first input.
*
* @return The type of the first input
*/
public TypeInformation getType1() {
return inputStream1.getType();
}
/**
* Gets the type of the second input.
*
* @return The type of the second input
*/
public TypeInformation getType2() {
return inputStream2.getType();
}
/**
* Assumes as inputs a {@link BroadcastStream} and a {@link KeyedStream} and applies the given
* {@link KeyedBroadcastProcessFunction} on them, thereby creating a transformed output stream.
*
* @param function The {@link KeyedBroadcastProcessFunction} that is called for each element in the stream.
* @param The type of the keys in the keyed stream.
* @param The type of the output elements.
* @return The transformed {@link DataStream}.
*/
@PublicEvolving
public SingleOutputStreamOperator process(final KeyedBroadcastProcessFunction function) {
TypeInformation outTypeInfo = TypeExtractor.getBinaryOperatorReturnType(
function,
KeyedBroadcastProcessFunction.class,
1,
2,
3,
TypeExtractor.NO_INDEX,
getType1(),
getType2(),
Utils.getCallLocationName(),
true);
return process(function, outTypeInfo);
}
/**
* Assumes as inputs a {@link BroadcastStream} and a {@link KeyedStream} and applies the given
* {@link KeyedBroadcastProcessFunction} on them, thereby creating a transformed output stream.
*
* @param function The {@link KeyedBroadcastProcessFunction} that is called for each element in the stream.
* @param outTypeInfo The type of the output elements.
* @param The type of the keys in the keyed stream.
* @param The type of the output elements.
* @return The transformed {@link DataStream}.
*/
@PublicEvolving
public SingleOutputStreamOperator process(
final KeyedBroadcastProcessFunction function,
final TypeInformation outTypeInfo) {
Preconditions.checkNotNull(function);
Preconditions.checkArgument(inputStream1 instanceof KeyedStream,
"A KeyedBroadcastProcessFunction can only be used on a keyed stream.");
TwoInputStreamOperator operator =
new CoBroadcastWithKeyedOperator<>(clean(function), broadcastStateDescriptors);
return transform("Co-Process-Broadcast-Keyed", outTypeInfo, operator);
}
/**
* Assumes as inputs a {@link BroadcastStream} and a non-keyed {@link DataStream} and applies the given
* {@link BroadcastProcessFunction} on them, thereby creating a transformed output stream.
*
* @param function The {@link BroadcastProcessFunction} that is called for each element in the stream.
* @param The type of the output elements.
* @return The transformed {@link DataStream}.
*/
@PublicEvolving
public SingleOutputStreamOperator process(final BroadcastProcessFunction function) {
TypeInformation outTypeInfo = TypeExtractor.getBinaryOperatorReturnType(
function,
BroadcastProcessFunction.class,
0,
1,
2,
TypeExtractor.NO_INDEX,
getType1(),
getType2(),
Utils.getCallLocationName(),
true);
return process(function, outTypeInfo);
}
/**
* Assumes as inputs a {@link BroadcastStream} and a non-keyed {@link DataStream} and applies the given
* {@link BroadcastProcessFunction} on them, thereby creating a transformed output stream.
*
* @param function The {@link BroadcastProcessFunction} that is called for each element in the stream.
* @param outTypeInfo The type of the output elements.
* @param The type of the output elements.
* @return The transformed {@link DataStream}.
*/
@PublicEvolving
public SingleOutputStreamOperator process(
final BroadcastProcessFunction function,
final TypeInformation outTypeInfo) {
Preconditions.checkNotNull(function);
Preconditions.checkArgument(!(inputStream1 instanceof KeyedStream),
"A BroadcastProcessFunction can only be used on a non-keyed stream.");
TwoInputStreamOperator operator =
new CoBroadcastWithNonKeyedOperator<>(clean(function), broadcastStateDescriptors);
return transform("Co-Process-Broadcast", outTypeInfo, operator);
}
@Internal
private SingleOutputStreamOperator transform(
final String functionName,
final TypeInformation outTypeInfo,
final TwoInputStreamOperator operator) {
// read the output type of the input Transforms to coax out errors about MissingTypeInfo
inputStream1.getType();
inputStream2.getType();
TwoInputTransformation transform = new TwoInputTransformation<>(
inputStream1.getTransformation(),
inputStream2.getTransformation(),
functionName,
operator,
outTypeInfo,
environment.getParallelism());
if (inputStream1 instanceof KeyedStream) {
KeyedStream keyedInput1 = (KeyedStream) inputStream1;
TypeInformation> keyType1 = keyedInput1.getKeyType();
transform.setStateKeySelectors(keyedInput1.getKeySelector(), null);
transform.setStateKeyType(keyType1);
}
@SuppressWarnings({ "unchecked", "rawtypes" })
SingleOutputStreamOperator returnStream = new SingleOutputStreamOperator(environment, transform);
getExecutionEnvironment().addOperator(transform);
return returnStream;
}
protected F clean(F f) {
return getExecutionEnvironment().clean(f);
}
}
- BroadcastConnectedStream.process接收两种类型的function,一种是KeyedBroadcastProcessFunction,另外一种是BroadcastProcessFunction;它们都定义了processElement、processBroadcastElement抽象方法,只是KeyedBroadcastProcessFunction多定义了一个onTimer方法,默认是空操作,允许子类重写
小结
- 对于broadcast的使用有几个步骤,1是建立MapStateDescriptor,然后通过DataStream.broadcast方法返回BroadcastStream;2是需要接受broadcast的stream通过DataStream.connect方法跟BroadcastStream进行连接返回BroadcastConnectedStream;3是通过BroadcastConnectedStream.process方法进行processElement及processBroadcastElement处理
- BroadcastConnectedStream.process接收两种类型的function,一种是KeyedBroadcastProcessFunction,另外一种是BroadcastProcessFunction;它们都定义了processElement、processBroadcastElement抽象方法,只是KeyedBroadcastProcessFunction多定义了一个onTimer方法,默认是空操作,允许子类重写
- Broadcast State为map format,它会将state广播到每个task,注意该state并不会跨task传播,对其修改,仅仅是作用在其所在的task;downstream tasks接收到broadcast event的顺序可能不一样,所以依赖其到达顺序来处理element的时候要小心;checkpoint的时候也会checkpoint broadcast state;另外就是Broadcast State只在内存有,没有RocksDB state backend
doc
- The Broadcast State Pattern