- 向量数据库Faiss(Facebook AI Similarity Search)
shiming8879
数据库faiss人工智能
向量数据库Faiss(FacebookAISimilaritySearch)是FacebookAIResearch开发的一款高效且可扩展的相似性搜索和聚类库,专门用于处理大规模向量数据的搜索和检索任务。Faiss以其出色的性能和灵活性,在图像检索、文本搜索、推荐系统等多个领域得到了广泛应用。以下将详细介绍Faiss的搭建与使用过程,包括安装、基本使用、索引类型选择、性能优化及应用场景等方面。一、F
- 基于Hadoop的海量图像检索
usp1994
hadoopeclipse大数据
基于Hadoop的海量图像检索“MassiveImageRetrievalBasedonHadoop:AStudyinSoftwareEngineering”完整下载链接:基于Hadoop的海量图像检索文章目录基于Hadoop的海量图像检索摘要第一章引言1.1研究背景1.2研究意义1.3国内外研究现状1.4研究内容与方法1.5论文结构第二章相关技术介绍2.1Hadoop框架2.2分布式存储与计算2
- 向量数据库 Milvus:智能检索新时代
三余知行
「数智通识」「机器学习」数据库milvus智能检索高维数据检索AIGC维护
文章目录Milvus核心技术Milvus基本特点索引策略相似度计算图像检索演示Milvus基础维护环境搭建建立向量索引数据导入数据更新数据删除用户权限管理Milvus评估与调优性能评估调优技巧Milvus数据安全安全策略数据备份与恢复Milvus扩展性案例演示电影推荐在线广告投放结语随着人工智能和大数据技术的不断进步,向量数据库的应用场景愈发广泛。Milvus作为一款优秀的开源向量数据库,凭借其强
- 哈工大SCIR | 场景图生成简述
zenRRan
人工智能计算机视觉知识图谱
原创作者:梁家锋郑子豪王禹鑫孙一恒刘铭出处:哈工大SCIR进NLP群—>加入NLP交流群1引言场景图是一种结构表示,它将图片中的对象表示为节点,并将它们的关系表示为边。最近,场景图已成功应用于不同的视觉任务,例如图像检索[3]、目标检测、语义分割、图像合成[4]和高级视觉-语言任务(如图像字幕[1]或视觉问答[2]等)。它是一种具有丰富信息量的整体场景理解方法,可以连接视觉和自然语言领域之间巨大差
- CVPR 2023: CLIP for All Things Zero-Shot Sketch-Based Image Retrieval, Fine-Grained or Not
结构化文摘
sketchmacosui
我们使用以下6个分类标准对本文的研究选题进行分析:1.任务类型:图像检索:最常见任务,目标是检索与给定草图相似的图像。例如:[1,2,3,4,5,6,7,8,9,14,16,30,35,42,43,44,53,58,59,61,62,64,65,67,68,72,73]图像生成:相反,根据草图生成图像。例如:[11,33]目标检测:基于草图识别图像中的特定目标。例如:[13]2.输入模式:仅草图:
- 【机器视觉实验】机器视觉实验四——基于knn的场景图像检索、基于SVM的人脸图像识别
沐风—云端行者
深度学习实验支持向量机人工智能算法机器视觉计算机视觉机器学习图像识别
一、实验内容实验内容包含要进行什么实验,实验的目的是什么,实验用到的算法及其原理的简单介绍。(1)编程实现基于knn的场景图像检索a)至少实现三种特征组合进行检索;b)使用recall与precision分析不同特征组合对检索精度的影响。(2)实现基于SVM的人脸图像识别a)准备一张含有有自己照片的图片,并拍摄自己的人脸图片集;b)训练SVM人脸分类器c)实现基于滑动窗口的人脸检测算法;d)识别出
- 计算机设计大赛 图像检索算法
iuerfee
python
文章目录1前言2图像检索介绍(1)无监督图像检索(2)有监督图像检索3图像检索步骤4应用实例5最后1前言优质竞赛项目系列,今天要分享的是图像检索算法该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate图像检索:是从一堆图片中找到与待匹配的图像相似的图片,就是以图找图。网络时代,随着各种社
- 2024年,AIGC赛道专利文献和软著大全
AI周红伟
AIGC人工智能机器学习chatgpt
一、周红伟-深度学习国际发明专利深度学习国际发明专利基于深度学习的图像检索方法及装置,专利公开公告号:CN107368614A。专利类型:发明公布。发明人:周红伟;李凯;任伟;李庆;郭奇杰;周杨;刘川郁二、机器学习算法发表文献Simulationmodelanddropletejectionperformanceofathermal-bubblemicroejector,HongweiZhou,A
- 探索图像检索:从理论到实战的应用
TechLead KrisChang
机器学习深度学习人工智能
目录一、引言二、图像检索技术概述图像检索的基本概念图像检索与文本检索的区别特征提取技术相似度计算索引技术三、图像检索技术代码示例图像特征提取示例相似度计算索引技术四、图像搜索流程架构数据采集与预处理特征提取相似度计算与排名结果呈现与优化五、实际应用图像检索在电子商务领域的应用图像检索在社交媒体中的应用图像检索在云存储服务中的应用本文深入探讨了图像检索技术及其在主流APP中的应用,涵盖了特征提取、相
- 【GitHub项目推荐--全球首个开源图像识别系统】【转载】
旅之灵夫
GitHub项目推荐github
你知道人脸识别、商品识别、车辆识别,以图搜图乃至自动驾驶,背后的技术是什么嘛?并不是图像分类、目标检测这些东西,而是综合使用目标检测、图像分类、度量学习、图像检索的【通用图像识别系统】…度量学习是啥?图像检索是啥?通用图像识别系统又是啥?好奇之余,老逛突然发现了一个通用图像识别系统快速搭建神器!GitHub地址:https://github.com/PaddlePaddle/PaddleClas那
- 基于内容的图像web检索系统
乐心唯帅
计算机视觉深度学习
题目:基于内容的图像在线检索系统简介:基于内容的图像在线检索系统(ContentBasedOnlineImageRetrieval,以下简称CBOIR),是计算机视觉领域中关注大规模数字图像内容检索的研究分支。典型的CBOIR系统,允许用户在线输入一张图像,在远程图像数据库中查找具有相同或相似内容的其它图片。要求:本实训完成的系统要求实现基于视觉特征的在线图像检索。该项目的实训内容主要包括:1.搭
- 半监督学习 - 三元组学习(Triplet Learning)
草明
数据结构与算法学习机器学习人工智能
什么是机器学习三元组学习(TripletLearning)是半监督学习中一种用于学习有用表示的方法。它通常用于学习数据中的相似性关系,尤其在人脸识别、图像检索等领域中得到广泛应用。三元组学习是通过构造三元组(triplet)来训练模型,每个三元组包含一个锚点样本(anchorsample)、一个正样本(positivesample)和一个负样本(negativesample)。三元组的构造锚点样本
- [2019CVPR论文笔记]Doodle to Search Practical Zero-Shot Sketch-based Image Retrieval
qq_44932092
CVPR2019图像检索图像检索CVPR2019深度学习few-shot
摘要文章地址:http[https://arxiv.org/pdf/1904.03451v1.pdf]在本文中,我们研究了基于零样本的草图图像检索(ZS-SBIR)的问题,其中人类草图被用作查询以从不可见的类别中检索照片。我们通过提出一种新颖的ZS-SBIR场景来进一步推进现有技术,该场景代表了其实际应用中的一步。新设置独特地认识到实际ZS-SBIR的两个重要但经常被忽视的挑战,(1)业余草图和照
- 图像处理中常用的距离
图灵追慕者
图像处理图像处理欧氏距离常用距离距离的类型距离度量
说明在图像处理中,常用的距离度量用于衡量两个向量或特征之间的差异或相似性。以下是一些常用的距离度量及其使用说明和应用场景:欧氏距离(EuclideanDistance):欧氏距离是最常用的距离度量,用于衡量两个向量之间的几何距离。它可以用于图像检索、目标识别和图像聚类等任务。曼哈顿距离(ManhattanDistance):曼哈顿距离是指两个向量之间的每个维度差的绝对值之和。它适用于特征具有明显方
- 无代码DIY图像检索
colorknight
低代码人工智能HuggingFace大模型MilvusEmbedding图像检索
软件环境准备可参见《HuggingFists-低代码玩转LLMRAG-准备篇》中的HuggingFists安装及Milvus安装。流程环境准备图片准备进入HuggingFists内置的文件系统,数据源->文件系统->sengee_fs_settings_201创建Image文件夹将事先准备的多张相同或不同种类的图片上传到Image目录下。如下图:HuggingFace账号准备HuggingFist
- 遥感影像-语义分割数据集:WHDLD数据集详细介绍及训练样本处理流程
ly_0624
语义分割数据集深度学习人工智能图像处理数据分析计算机视觉
原始数据集详情简介:WHDLD是一个密集的标签数据集,可用于多标签任务,例如遥感图像检索(RSIR)和分类,以及其他基于像素的任务,例如语义分割(在遥感中也称为分类)。KeyValue卫星类型GaoFen-1、ZiYuan-3覆盖区域未知场景未知分辨率2m数量4940张单张尺寸256*256原始影像位深8位标签图片位深8位原始影像通道数三通道标签图片通道数单通道标签类别对照表像素值类别名(英文)类
- 灰度共生矩阵纹理特征提取matlab,灰度共生矩阵纹理特征提取的Matlab实现
陆牙
收稿日期:2012-03-20;修回日期:2012-06-24基金项目:国家“十一五”计划课题(FIB070335-B8-04)作者简介:焦蓬蓬(1981-),女,硕士,讲师,研究方向为数字信号处理。灰度共生矩阵纹理特征提取的Matlab实现焦蓬蓬,郭依正,刘丽娟,卫星(南京师范大学泰州学院,江苏泰州225300)摘要:图像的特征提取是图像的识别和分类、基于内容的图像检索、图像数据挖掘等研究内容的
- 简易机器学习笔记(八)关于经典的图像分类问题-常见经典神经网络LeNet
Leventure_轩先生
不涉及理论的简易机器学习笔记机器学习笔记分类
前言图像分类是根据图像的语义信息对不同类别图像进行区分,是计算机视觉的核心,是物体检测、图像分割、物体跟踪、行为分析、人脸识别等其他高层次视觉任务的基础。图像分类在许多领域都有着广泛的应用,如:安防领域的人脸识别和智能视频分析等,交通领域的交通场景识别,互联网领域基于内容的图像检索和相册自动归类,医学领域的图像识别等。这里简单讲讲LeNet我的推荐是可以看看这个视频,可视化的查看卷积神经网络是如何
- [2015 Springer] Local Image Descriptor: Modern Approaches——1 Introduction
AllisWell_WP
计算机视觉图像处理书翻译计算机视觉图像处理特征提取描述符翻译
转载请注明链接:有问题请及时联系博主:Alliswell_WP持续更新中…翻译本地图像描述符:现代方法——作者:BinFan,ZhenhuaWang,FuchaoWu有关该系列的更多信息,请访问http://www.springer.com/series/10028前言1在过去的15年中,特征点描述符已成为计算机视觉社区中必不可少的工具。它们是从图像检索到多图像立体匹配以及从表面重建到图像增强等应
- 互联网加竞赛 python图像检索系统设计与实现
Mr.D学长
pythonjava
0前言优质竞赛项目系列,今天要分享的是python图像检索系统设计与实现学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1课题简介图像检索:是从一堆图片中找到与待匹配的图像相似的图片,就是以图找图。网络时
- 竞赛保研 python图像检索系统设计与实现
iuerfee
python
0前言优质竞赛项目系列,今天要分享的是python图像检索系统设计与实现学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1课题简介图像检索:是从一堆图片中找到与待匹配的图像相似的图片,就是以图找图。网络时
- 新零售场景(图像检索、识别,分类)sku级别数据集
Funny_AI_LAB
数据汇总计算机视觉目标检测分类零售
1.AiProducts-Challenge(阿里2020)下载地址:2020-AiProducts-Challenge-dataset数据介绍:Large-scaleProductRecognition赛题与数据-天池大赛-阿里云天池该数据集包含近300万张图片,涵盖5万个SKU级商品类别。1st-plan:1st__WinnerSolutionforAliProductsChallengeLa
- 遥感图像之多模态检索AMFMN(支持关键词、句子对图像的检索)论文阅读、环境搭建、模型测试、模型训练
qq_41627642
深度学习多模态论文阅读计算机视觉人工智能
一、论文阅读1、摘要背景遥感跨模态文本图像检索以其灵活的输入和高效的查询等优点受到了广泛的关注。然而,传统的方法忽略了遥感图像多尺度和目标冗余的特点,导致检索精度下降。为了解决遥感多模态检索任务中的多尺度稀缺性和目标冗余问题,提出了一种新的非对称多模态特征匹配网络(AMFMN)。该模型可适应多尺度特征输入,支持多源检索方法,并能动态过滤冗余特征。AMFMN采用多尺度视觉自注意(MVSA)模块提取R
- 在Python中探索图像相似性方法
小北的北
python开发语言
在一个充斥着图像的世界里,衡量和量化图像之间相似性的能力已经成为一项关键任务。无论是用于图像检索、内容推荐还是视觉搜索,图像相似性方法在现代应用中起着至关重要的作用。幸运的是,Python提供了大量工具和库,使得开发人员和研究人员能够轻松地探索和实现这些方法。在这篇博客中,我们将深入探讨各种图像相似性技术,并演示如何使用Python实现它们。理解图像相似性图像相似性可以被看作是两幅图像在视觉内容方
- 浅析行人重识别
Shirleybebe
行人重识别在此先给出官方解释: 行人重识别(Personre-identification)也称行人再识别,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。旨在弥补固定的摄像头的视觉局限,并可与行人检测/行人跟踪技术相结合,可广泛应用于智能视频监控、智能安保等领域。给定一个监控行人图像:给定一个希
- akaze特征匹配怎么去掉不合适的点_自动驾驶汽车视觉- 图像特征提取与匹配技术
weixin_39890102
opencv4图像特征匹配opencv纹理特征提取sift特征提取图像特征匹配opencv4基于fpga的vga图像显示
FeaturedetectionandmatchingGithub:https://github.com/williamhyin/SFND_2D_Feature_TrackingEmail:
[email protected]特征提取和匹配是许多计算机视觉应用中的一个重要任务,广泛运用在运动结构、图像检索、目标检测等领域。每个计算机视觉初学者最先了解的特征检测器几乎都是1988年发布的H
- 如何高效、精准地进行图片搜索?看看轻量化视觉预训练模型
AI科技大本营
神经网络大数据算法编程语言python
来源|微软研究院AI头条编者按:你是否有过图像检索的烦恼?或是难以在海量化的图像中准确地找到所需图像,或是在基于文本的检索中得到差强人意的结果。对于这个难题,微软亚洲研究院和微软云计算与人工智能事业部的研究人员对轻量化视觉模型进行了深入研究,并提出了一系列视觉预训练模型的设计和压缩方法,实现了视觉Transformer的轻量化部署需求。目前该方法和模型已成功应用于微软必应搜索引擎,实现了百亿图片的
- Image Caption:图像字幕生成
于建民
技术博客ImageCaptionRNN图像注释图像描述场景理解
前言图像处理与自然语言处理的结合,给图像加字幕或者描述。应用前景非常广,比如早教,图像检索,盲人导航等。图像注释问题的通用解法非常接近于Encoder-Decoder结构,下面就几种方法作简单总结。m-RNNMao这篇2015-paper,根据输入语句和图片,为图片生成字幕;以DeepRNN处理语句,用CNN处理图片。基本思路:直接将图像表示和词向量以及隐向量作为多模判断的输入。左侧是简单RNN结
- 行人重识别-REID
椒椒。
计算机视觉深度学习人工智能
行人重识别-REID一、REID二、为什么使用REID三、REID应用场景四、REID研究形式五、REID存在的挑战一、REID行人重识别-REID(personre-identification)也叫做行人再识别技术。利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。如下图所示:一个区域有多个摄像头拍
- 汽车虚拟仿真视频数据理解--CLIP模型原理
无盐薯片
比赛神经网络python人工智能
CLIP模型原理CLIP的全称是ContrastiveLanguage-ImagePre-Training,中文是对比语言-图像预训练,是一个预训练模型,简称为CLIP。该模型是OpenAI在2021年发布的,最初用于匹配图像和文本的预训练神经网络模型,这个任务在多模态领域比较常见,可以用于文本图像检索,CLIP是近年来在多模态研究领域的经典之作。该模型大量的成对互联网数据进行预训练,在很多任务表
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号