- 网络学习记录2
Tic..
网络知识专栏网络
一、复习网络基础知识(基础&少量&持续):1、巩固OSPF协议:①OSPF按工作区域分类,分为IGP(InteriorGatewayProtocols内部网关)和EGP(ExteriorGatewayProtocols外部网关),按照工作机制及算法分类,分为(DistanceVectorRoutingProtocols距离矢量路由协议)和(Link-StateRoutingProtocols链路状
- ChatRec的实践:交互式推荐系统的进步
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
交互式推荐系统,Chat-Rec,对话推荐,自然语言处理,机器学习,用户行为分析,个性化推荐1.背景介绍推荐系统作为互联网时代的重要技术支柱,在电商、社交媒体、内容平台等领域发挥着至关重要的作用。传统的推荐系统主要依赖于用户历史行为数据,例如浏览记录、购买历史等,通过协同过滤、内容过滤等算法,预测用户潜在的兴趣并提供个性化推荐。然而,随着用户需求的不断变化和个性化的程度不断提高,传统的推荐系统面临
- AI如何帮助电商企业进行数据分析
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
电商数据分析,人工智能,机器学习,深度学习,推荐系统,预测模型,客户画像1.背景介绍在当今数字化时代,电商行业蓬勃发展,数据成为企业最重要的资产。电商企业每天都会产生海量的数据,包括用户行为、商品信息、交易记录等。如何有效地分析这些数据,挖掘其中的价值,对于电商企业的运营、营销和发展至关重要。传统的数据分析方法往往难以应对海量数据的处理和复杂分析需求,而人工智能(AI)技术的出现为电商数据分析带来
- 大规模语言模型从理论到实践 大语言模型预训练数据
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践:大语言模型预训练数据关键词:大规模语言模型、预训练数据、数据集选择、数据清洗、数据增强、数据集评估、数据集扩展1.背景介绍1.1问题的由来随着深度学习和大规模神经网络的发展,大型语言模型(LargeLanguageModels,LLMs)成为了自然语言处理(NLP)领域的一项突破性技术。LLMs能够生成流畅且具有上下文关联性的文本,这得益于它们在海量文本数据上的预训练。
- 神经架构搜索在大模型效率优化中的应用
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
神经架构搜索,大模型,效率优化,自动机器学习,深度学习1.背景介绍近年来,深度学习模型取得了令人瞩目的成就,在图像识别、自然语言处理、语音识别等领域展现出强大的能力。然而,随着模型规模的不断扩大,训练和部署这些大模型也带来了巨大的挑战。计算资源消耗巨大:大模型的训练需要大量的计算资源,例如高性能GPU和TPU,这导致训练成本高昂,难以普及。内存占用量大:大模型的参数量庞大,需要大量的内存进行存储和
- Python爬虫:从入门到实践
来恩1003
Python爬虫python爬虫开发语言
Python爬虫学习资料Python爬虫学习资料Python爬虫学习资料在当今数字化信息爆炸的时代,数据已成为企业和个人发展的重要资产。Python爬虫作为一种高效获取网络数据的工具,正逐渐被广大开发者所熟知和应用。无论是市场调研、学术研究,还是数据分析,Python爬虫都能发挥巨大作用。本文将带你从基础概念出发,逐步深入到爬虫的实战应用,助你掌握这一强大的数据获取技能。一、爬虫基础:开启数据获取
- 探索微信小程序开发之旅
来恩1003
微信小程序微信小程序小程序
微信小程序学习资料微信小程序学习资料微信小程序学习资料在移动互联网蓬勃发展的当下,微信小程序以其无需下载安装、触手可及的特性,成为众多开发者和企业的热门选择。无论是为了拓展业务渠道、提升用户体验,还是追求技术创新,学习微信小程序开发都能为你打开一扇充满机遇的大门。接下来,让我们一同踏上微信小程序的学习征程。一、基础搭建:开启小程序开发之门开发工具准备:微信官方提供了功能强大且易用的开发工具——微信
- 机器学习——逻辑回归
口_天_光健
python机器学习逻辑回归
逻辑回归技术文档目录简介逻辑回归的基本概念逻辑回归的数学原理逻辑回归的实现步骤代码示例逻辑回归的应用逻辑回归的优化方法逻辑回归的局限性逻辑回归的扩展与变体逻辑回归与其他算法的对比总结简介逻辑回归(LogisticRegression)是一种广泛应用于分类问题的统计方法。尽管名字中有“回归”二字,但逻辑回归实际上是一种分类算法,主要用于二分类问题,但也可以通过扩展用于多分类问题。逻辑回归通过使用逻辑
- 卷积神经网络(CNN):深度学习中的核心模型
任义礼智信
深度学习cnn人工智能
引言卷积神经网络(ConvolutionalNeuralNetworks,CNNs)是深度学习领域的一种重要模型,广泛应用于图像处理、计算机视觉、自然语言处理等多个领域。CNN凭借其卓越的特征提取能力和参数共享机制,已成为计算机视觉任务中最主流的算法之一。本文将深入探讨CNN的基本原理、结构组件、应用场景及其发展方向。CNN的基本原理CNN是一种特殊的前馈神经网络(FeedforwardNeura
- 【机器学习:十五、神经网络的编译和训练】
KeyPan
机器学习机器学习神经网络人工智能深度学习pytorchubuntulinux
1.TensorFlow实现代码TensorFlow是深度学习中最为广泛使用的框架之一,提供了灵活的接口来构建、编译和训练神经网络。以下是实现神经网络的一个完整代码示例,以“手写数字识别”为例:importtensorflowastffromtensorflow.kerasimportlayers,models#加载MNIST数据集(x_train,y_train),(x_test,y_test)
- 【机器学习:十六、其他的激活函数】
KeyPan
机器学习机器学习人工智能算法服务器运维ubuntu
1.Sigmoid激活函数的替代方案Sigmoid激活函数在神经网络中曾广泛使用,其数学公式为:σ(x)=11+e−x\sigma(x)=\frac{1}{1+e^{-x}}σ(x)=1+e−x1输出范围为(0,1),适合二分类问题。但随着深度学习的发展,Sigmoid函数逐渐被替代,主要原因包括:梯度消失问题:当输入绝对值较大时,梯度趋近于零,导致权重更新困难。非零中心问题:输出值始终为正,可能
- Linux驱动学习--DRM框架介绍及基于DRM框架的HDMI开发
文艺小少年
linuxandroidhdmi驱动程序drm
目录一、引言二、DRM框架介绍三、DRM框架的使用四、源码分析一、引言Android4开始,hdmi等视频输出框架开始由framebuffer想DRM迁移,今天我们就来简单分析下DRM框架二、DRM框架介绍DRM是一个内核级的设备驱动,具体的说是显卡驱动的一种架构源码位置因为Linuxkernel内部接口和数据结构可能随时发生变化,所以DRI模块要针对特定的内核版本进行编译。kernel2.6.2
- 深度学习图像算法中的网络架构:Backbone、Neck 和 Head 详解
肥猪猪爸
#深度学习深度学习算法人工智能数据结构神经网络计算机视觉机器学习
深度学习已经成为图像识别领域的核心技术,特别是在目标检测、图像分割等任务中,深度神经网络的应用取得了显著进展。在这些任务的网络架构中,通常可以分为三个主要部分:Backbone、Neck和Head。这些部分在整个网络中扮演着至关重要的角色,它们各自处理不同的任务,从特征提取到最终的预测输出,形成了一个完整的图像处理流程。本文将详细介绍这三部分的作用以及它们在目标检测和图像分割中的应用,帮助大家更好
- 使用 Docker 在 Alpine Linux 下部署 Caddy 服务器
shelby_loo
服务器dockerlinux
简介在现代web开发中,选择合适的web服务器至关重要。Caddy是一个功能强大的现代化HTTP/2服务器,支持自动HTTPS,配置简单,适合开发和生产环境。Docker则为我们提供了一种轻量级的容器化技术,使得应用程序的部署和管理变得更加高效。AlpineLinux是一个轻量级的Linux发行版,以其小巧和安全著称,非常适合用于容器化环境。今天,我们将一起学习如何在AlpineLinux下通过D
- 频域增强通道注意力机制EFCAM模型详解及代码复现
呆头鹅AI工作室
深度学习算法详解及代码复现深度学习人工智能神经网络condapython
背景与动机在深度学习领域,如何有效处理时间序列数据一直是一个重要的研究方向。近年来,频域分析技术在时间序列处理中展现出了巨大潜力,特别是离散余弦变换(DCT)因其能够高效捕捉低频信息并避免高频噪声干扰而受到广泛关注。FECAM模型的开发正是基于这一背景,旨在结合频域分析和通道注意力机制,以提高模型对时间序列数据的特征提取和表示能力。通过这种创新方法,FECAM模型能够更有效地捕捉时间序列中的关键特
- 《Python实现简易DDoS压力测试脚本:原理、代码与使用警示》
乐茵安全
python_studychrome前端python网络安全
DDoS测试脚本声明:本文所涉及代码仅供学习使用,任何人利用此造成的一切后果与本人无关源码import requestsimport threading# 目标URLtarget_url = "http://47.121.xxx.xxx/"# 发送请求的函数def send_request(): while True: try: response = re
- 求和——蓝桥杯
走啦小孩
c++算法蓝桥杯数据结构
1.求和题目描述小明对数位中含有2、0、1、92、0、1、9的数字很感兴趣,在11到4040中这样的数包括1、2、9、101、2、9、10至32、3932、39和4040,共2828个,他们的和是574574。请问,在11到20192019中,所有这样的数的和是多少?运行限制最大运行时间:1s最大运行内存:128M2.代码两个代码,第一个代码中加了布尔函数进行判断,有点多此一举了,但是可以学习一下
- 黎曼流形优化知识点学习
cmgdxrz
学习
一、黎曼流形切空间被赋予一个光滑变化的内积的流形就是黎曼流形Riemannianmanifold。光滑变化的内积称为黎曼度量Riemannianmetric。二、线性空间,向量空间,矩阵空间(一)线性空间线性空间是一个抽象的数学概念,它是指一个集合,其中包含了元素和标量。这些元素之间可以进行加法运算和数乘运算,且仍得到元素。线性空间必须满足向量空间的所有条件,并且还需要满足以下条件:加法交换律:u
- PyTorch建模与应用:从深度学习到大模型
屿小夏
书籍推荐深度学习pytorch人工智能
文章目录一、内容简介二、值得一读1.从基础到深入,适合不同层次的读者2.丰富的实战案例3.全面的数据处理与模型构建三、适用人群1.AI技术初学者2.在校学生和从业者3.培训机构和高校教学四、总结一、内容简介《动手学PyTorch建模与应用:从深度学习到大模型》是一本从零基础上手深度学习和大模型的PyTorch实战指南。全书共11章,内容涵盖了从深度学习的基础概念到大语言模型的应用。第1章介绍了深度
- 遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络
盼小辉丶
遗传算法与深度学习实战深度学习kerascnn
遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络0.前言1.卷积神经网络基本概念1.1卷积1.2步幅1.3填充1.4激活函数1.5池化2.使用Keras构建卷积神经网络3.CNN层的问题4.模型泛化小结系列链接0.前言卷积神经网络(ConvolutionalNeuralNetwork,CNN)的提出是为了解决传统神经网络的缺陷。即使对象位于图片中的不同位置或其在图像中具有不同占比,
- Python网络爬虫入门教程:从抓取数据到应用实现
冷夜雨.
python
引言在大数据时代,信息就是力量。各种网站每天产生着海量的数据,这些数据中蕴藏着巨大的商业价值和研究价值。如何快速、自动化地从互联网上获取这些信息,成为了数据科学、人工智能、市场分析等领域中的一个重要课题。Python,作为一门易于学习且功能强大的编程语言,其丰富的库和工具使得构建网络爬虫变得非常简单。网络爬虫(WebScraper)是一种自动化程序,用来从网页中提取信息。无论是用于数据分析、竞争对
- 【深度学习地学应用|滑坡制图、变化检测、多目标域适应、感知学习、深度学习】跨域大尺度遥感影像滑坡制图方法:基于原型引导的领域感知渐进表示学习(一)
努力学习的大大
论文推荐深度学习人工智能机器学习神经网络变化检测
【深度学习地学应用|滑坡制图、变化检测、多目标域适应、感知学习、深度学习】跨域大尺度遥感影像滑坡制图方法:基于原型引导的领域感知渐进表示学习(一)【深度学习地学应用|滑坡制图、变化检测、多目标域适应、感知学习、深度学习】跨域大尺度遥感影像滑坡制图方法:基于原型引导的领域感知渐进表示学习(一)文章目录【深度学习地学应用|滑坡制图、变化检测、多目标域适应、感知学习、深度学习】跨域大尺度遥感影像滑坡制图
- 【vLLM 学习】安装
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/vLLM是一个Python库,包含预编译的C++和CUDA(12.1)二进制文件。依赖环境操作系统:LinuxPython:3.8-3.12GPU:计算能力7.0或更高(例如V100、T4、RTX20xx、A100、L
- 提升CSS动画学习效率的利器——ScriptEcho
前端
引言在现代网页设计中,CSS动画的重要性不言而喻。它不仅能够为用户提供更为生动的视觉体验,还能有效地吸引用户的注意力。例如,按钮的悬停效果、页面的加载动画等,都是通过CSS动画实现的。然而,尽管CSS动画的应用场景广泛,但对于零基础的学习者来说,学习其中的技巧和知识常常面临挑战。本文将介绍如何通过ScriptEcho这一强大的工具来提升CSS动画的学习效率,让每位学习者都能轻松入门。CSS动画基础
- C语言学习——指针与数组,指针与函数,指针与堆空间
许白掰
c语言学习算法
目录一、指针与数组1.导入问题2.深入理解数组地址(inta[]={1,2,3,4,5};)3.指针与数组的等价用法4.字符串拾遗5.指针移动组合拳:intv=*p++6.小结二、指针与函数1.导入问题2.深入函数之旅3.函数指针(Typefunc(Type1a,Type2b))4.函数指针参数5.再论数组参数6.小结三、指针与堆空间1.再论内存空间2.堆空间的本质3.预备知识——void*4.堆
- 【第四天】零基础入门刷题Python-Selenium-自动化测试-打开百度的首页搜索B站然后打开B站-切换B站窗口在B站搜索框中搜索Selenium-复习XPATH详细语法
Long_poem
pythonselenium开发语言xmlhtml
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、先复习昨天的XPATH语法,然后学习怎么切换窗口二、详细代码1.对本节代码XPath表达式的解释2.在百度的首页上搜索B站后打开B站-在B站搜索框中搜索Selenium3.对切换窗口的详细介绍4.对上方的两个模块的详细介绍总结前言提示:这里可以添加本文要记录的大概内容:第零天练习补充零基础入门刷题Python-Sele
- 麦田物语学习笔记:构建游戏的时间系统
扶离_flee
麦田物语学札学习笔记游戏
基本流程1.代码思路(1)新建一个TimeManager.cs(2)创建枚举变量来表示四季,在TimeManager里需要的变量有:游戏内的秒,分钟,小时,天,月,年;游戏内的季节;控制一个季节有多少个月;控制时间的暂停;计时器tikTime(3)在Settings里添加计时器的阈值,以及各个时间的进位(4)初始化各个时间单位以及实现更新游戏时间的逻辑2.代码实现新增枚举类publicenumSe
- Docker基础教程
由于格式和图片解析问题,可能会影响阅读体验,可前往博客阅读原文Docker是一个开源的容器化平台,可以帮助开发者和运维人员更快地构建、发布和运行应用程序。Docker使用容器技术,将应用程序和其依赖项打包到一个可移植的容器中,从而实现跨平台、快速部署和易于管理的目的。本文主要从docker的基础开始学习,包括基本架构、全局命令、镜像、仓库、容器扫码关注公众号,查看更多优质文章Docker架构Doc
- 牛奶:儿童成长的营养卫士
css
在孩子成长的旅程中,牛奶扮演着至关重要的角色。从婴幼儿时期的配方奶,精准调配营养成分,满足宝宝快速生长发育需求,助力大脑、骨骼发育。到孩童阶段,每天一杯纯牛奶,为奔跑玩耍的他们补充能量,钙元素让骨骼更强壮,像坚固的小卫士,支撑孩子探索世界。学校课间,一盒牛奶成为孩子们喜爱的营养补给,确保学习精力充沛。家长们看着孩子茁壮成长,心中满是欣慰,而牛奶功不可没,用它满满的营养守护孩子成长每一步,是童年不可
- 遗传算法与深度学习实战(26)——编码卷积神经网络架构
盼小辉丶
遗传算法与深度学习实战深度学习cnn遗传算法
遗传算法与深度学习实战(26)——编码卷积神经网络架构0.前言1.EvoCNN原理1.1工作原理1.2基因编码2.编码卷积神经网络架构小结系列链接0.前言我们已经学习了如何构建卷积神经网络(ConvolutionalNeuralNetwork,CNN),在本节中,我们将了解如何将CNN模型的网络架构编码为基因,这是将基因序列进化在为给定数据集上训练最佳模型的先决条件。1.EvoCNN原理进化卷积神
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要