目录
- 1.从代数到图论
- 1.1.差分约束方程
- 1.2.图论解法
- 2.差分约束系统
- 2.1.大于还是小于
- 2.2.无解情况
- 2.2.1.条件矛盾
- 2.2.2.无关未知数
- 2.2.3.判断无解
- 2.3.超级原点
- 2.4.去除重边
- 3.模板代码
- 4.例题
- P1993 小K的农场
- tyvj-p1277 关系运算图
- HDU3440 House Man
1.从代数到图论
1.1.差分约束方程
差分约束方程就是形如 \(x_i-x_j \leq w_{ij}\) 或 \(x_i-x_j \geq w_{ij}\) 的方程组
比如说:
\(\begin{cases}x_1-x_3 \leq 5 \\x_1-x_2 \leq 2 \\x_2-x_1 \leq 0 \\x_2-x_3 \leq 2 \\x_3-x_2 \leq -1 \\ x_3-x_1 \leq -2 \end{cases}\)
就是一组差分方程。
下面是它的一组解:
\(\begin{cases}x_1=5 \\x_2=3 \\x_3=1 \end{cases}\)
一组差分约束方程要么有无穷组解,要么无解。因为如果它有解,那么它的解同时加上一个实数 \(k\),依旧是一组解。因为每个数都加\(k\),他们任意两个数之间的差是不变的,所以对于不等式没有影响。
\(\mathtt{For}\ \mathtt{Example}:\)
上式的解还可以是
\(\begin{cases}x_1=6 \\x_2=4 \\x_3=2 \end{cases}\)
(同时加\(1\))
1.2.图论解法
多数博客接下来是这么说的:
看到 \(x_i - x_j \leq w_{ij}\)
有没有想到什么呢? 可以变形为 \(x_i \leq x_j + w_{ij}\) ,这与单元最短路中的三角形不等式\(D_i<=D_j+w_{ij}\)非常相似
因此,可以把每个变量 \(x_i\) 看做有向图中的一个结点\(i\),对于约束条件 \(X_i - X_j ≤ w_{ij}\) ,从结点\(j\)向结点i连一条权值为 \(w_{ij}\) 的有向边。
这里补充一下:\(D_i\)就是上面\(x_i\)的一组解。
讲得是没错,然而,凭什么长得像就可以随便乱套呢?
首先第一步最开始,
我们画张图看看:
比如对于\(x_1-x_3 \leq 5\),如果有当前从1到3的最短路大于5,那么一定会被这条路(\(1\rightarrow3\))替换掉。
同理,对于 \(x_i-x_j \leq w_{ij}\),如果有当前从\(i\)到\(j\)的最短路大于\(w_{ij}\),那么一定会被这条路(\(i\rightarrow j\))替换掉。
大于也是同样的原理,可以举一反三。
同理可得其它边,以保证在前提(差分约束方程)不被违反的情况下得到最优解。
2.差分约束系统
2.1.大于还是小于
众所周知,不等式方程是互通的,它们可以互相转换。
\(\mathtt{For}\ \mathtt{Example}:\)
刚才的方程组:
\(\begin{cases}x_1-x_3 \leq 5 \\x_1-x_2 \leq 2 \\x_2-x_1 \leq 0 \\x_2-x_3 \leq 2 \\x_3-x_2 \leq -1 \\ x_3-x_1 \leq -2 \end{cases}\)
等价于:
\(\begin{cases}x_3-x_1 \geq -5 \\x_2-x_1 \geq -2 \\x_1-x_2 \geq 0 \\x_3-x_2 \geq -2 \\x_2-x_3 \geq 1 \\ x_1-x_3 \geq 2 \end{cases}\)
那么差分约束系统该用大于还是小于呢?
事实上,两者都有使用,具体看情况。
小于求最短路得到最大值,
大于求最长路得到最小值。
2.2.无解情况
并不是所有差分约束方程都有解。大致可分为两类:
2.2.1.条件矛盾
顾名思义,满足了条件A就无法满足条件B。
\(\mathtt{For}\ \mathtt{Example}:\)
\(\begin{cases}x_1-x_2 \leq 5 \\ x_2-x_1 \leq -6\end{cases}\)
等价于:
\(\begin{cases}x_1-x_2\leq5 \\ x_1-x_2\geq6\end{cases}\)
2.2.2.无关未知数
这个其实不一定算无解,不过和2.2.1判断方法一致,就勉强算无解吧。
未知数没有构成强连通分量。
\(\mathtt{For}\ \mathtt{Example}:\)
\(\begin{cases}x_1-x_2 \leq 5 \\ x_3-x_1 \leq 2\\ x_4-x_5 \leq 2 \\ x_5-x_6 \leq -3\end{cases}\)
这里
\(x_1,x_2,x_3\)与\(x_4,x_5,x_6\)毫无关联。
2.2.3.判断无解
最短路有负环或最长路有正环即为无解。
2.3.超级原点
超级原点连接到所有点,且权值都是0。
在求最长路时,可以加入一个超级原点以简化代码。
最短路似乎好像也许可能可以加入超级原点,不过容易引起错误。
2.4.去除重边
重复的边会容易导致错误(误判负环)
去重边的伪代码
flag <- 1
for i in G[u]
if G[u,i].v = v
if w better than G[u,i].w
set new G[u,i].w
flag <- 0;
if flag = 1
G[u].append(v, w)
3.模板代码
就是一个spfa模板:
bool spfa() {
memset(d, 0xef, sizeof(d));
d[0] = 0;
q.push(0);
tx[0] = 1;
while(!q.empty()) {
int u = q.front();
q.pop();
vis[u] = 0;
for(unsigned i = 0; i < G[u].size(); ++i) {
int v = G[u][i].v;
int dis = G[u][i].w;
if (d[v] > d[u] + dis) {
d[v] = d[u] + dis;
if (++tx[v] >= 40) {
return 0;
}
if (!vis[v]) {
q.push(v);
vis[v] = 1;
}
}
}
}
return 1;
}
最长时改一下符号:
if (dis[v] < dis[u] + w) {
--snip--
}
4.例题
P1993 小K的农场
模板题,长短路均可,主要问题是如何插入边:
scanf("%d %d", &n, &m);
for (int i = 1; i <= m; ++i) {
scanf("%d %d %d", &t, &a, &b);
if (t == 3) {
G[a].push_back(node(b, 0));
G[b].push_back(node(a, 0));
} else {
scanf("%d", &c);
if (t == 1) {
G[a].push_back(node(b, c));
} else {
G[b].push_back(node(a, -c));
}
}
}
tyvj-p1277 关系运算图
好像现在看不到题了:
Description
给出一有向图,图中每条边都被标上了关系运算符‘<’,‘>’,‘=’。现在要给图中每个顶点标上一个大于等于0,小于等于k的某个整数使所有边上的符号得到满足。若存在这样的k,则求最小的k,若任何k都无法满足则输出NO。
例如下表中最小的k为2。
结点1>结点2
结点2>结点3
结点2>结点4
结点3=结点4
如果存在这样的k,输出最小的k值;否则输出‘NO’。
Input
共二行,第一行有二个空格隔开的整数n和m。n表示G的结点个数,m表示G的边数,其中1<=n<=1000, 0<=m<=10000。全部结点用1到n标出,图中任何二点之间最多只有一条边,且不存在自环。
第二行共有3m个用空格隔开的整数,第3i-2和第3i-1(1<=i<=m)个数表示第i条边的顶点。第3i个数表示第i条边上的符号,其值用集合{-1,0,1}中的数表示:-1表示‘<’, 0 表示‘=’, 1表示‘>’。
Output
仅一行,如无解则输出‘NO’;否则输出最小的k的值。
Sample Input
4 4
1 2 -1 2 3 0 2 4 -1 3 4 -1
Sample Output
2
模板题,最长路
HDU3440 House Man
最短路,如果最高楼在最矮楼左边就翻转高度数组。
@2019-7-31 贵州铜仁镇远古镇