以太坊区块数据的持久化和查询

区块链数据的存储和查询需求十分简单。比如,给定一个区块号查询对应区块数据,给定一个区块哈希查询对应区块的数据,给定一个交易哈希查询这笔交易的详情,等等。这样的需求最适合KV存储引擎。以太坊区块数据的存储底层引擎采用谷歌开源的levelDB存储引擎。本文从源码入手分析以太坊区块数据的存储和查询过程,使用的go-ethereum源码,git commit hash是(6d1e292eefa70b5cb76cd03ff61fc6c4550d7c36)。和数据持久化和查询相关的代码主要分布在$GOPATH/src/github.com/ethereum/go-ethereum/core/rawdb/中。

关键数据结构

以太坊中一个区块在逻辑上可以看作是由区块头(header)和区块体(body)组成。header的结构如下

type Header struct {
    ParentHash  common.Hash    `json:"parentHash"       gencodec:"required"`
    UncleHash   common.Hash    `json:"sha3Uncles"       gencodec:"required"`
    Coinbase    common.Address `json:"miner"            gencodec:"required"`
    Root        common.Hash    `json:"stateRoot"        gencodec:"required"`
    TxHash      common.Hash    `json:"transactionsRoot" gencodec:"required"`
    ReceiptHash common.Hash    `json:"receiptsRoot"     gencodec:"required"`
    Bloom       Bloom          `json:"logsBloom"        gencodec:"required"`
    Difficulty  *big.Int       `json:"difficulty"       gencodec:"required"`
    Number      *big.Int       `json:"number"           gencodec:"required"`
    GasLimit    uint64         `json:"gasLimit"         gencodec:"required"`
    GasUsed     uint64         `json:"gasUsed"          gencodec:"required"`
    Time        *big.Int       `json:"timestamp"        gencodec:"required"`
    Extra       []byte         `json:"extraData"        gencodec:"required"`
    MixDigest   common.Hash    `json:"mixHash"          gencodec:"required"`
    Nonce       BlockNonce     `json:"nonce"            gencodec:"required"`
}

body的结构如下

type Body struct {
    Transactions []*Transaction
    Uncles       []*Header
}

但是以太坊一个区块的实际定义是这样的

type Block struct {
    header       *Header
    uncles       []*Header
    transactions Transactions

    // caches
    hash atomic.Value
    size atomic.Value

    // Td is used by package core to store the total difficulty
    // of the chain up to and including the block.
    td *big.Int

    // These fields are used by package eth to track
    // inter-peer block relay.
    ReceivedAt   time.Time
    ReceivedFrom interface{}
}

主要包含了header, uncles, transactionstd四个字段, 其他的几个字段主要用于性能优化和统计。

区块数据存储和查询

在进行数据同步时,节点会首先下载区块头,节点应该怎么存储从临节点下载的区块头数据呢?看下面这个函数

// WriteHeader stores a block header into the database and also stores the hash-
// to-number mapping.
func WriteHeader(db DatabaseWriter, header *types.Header) {
    // Write the hash -> number mapping
    var (
        hash    = header.Hash()
        number  = header.Number.Uint64()
        encoded = encodeBlockNumber(number)
    )
    key := headerNumberKey(hash)
    if err := db.Put(key, encoded); err != nil {
        log.Crit("Failed to store hash to number mapping", "err", err)
    }
    // Write the encoded header
    data, err := rlp.EncodeToBytes(header)
    if err != nil {
        log.Crit("Failed to RLP encode header", "err", err)
    }
    key = headerKey(number, hash)
    if err := db.Put(key, data); err != nil {
        log.Crit("Failed to store header", "err", err)
    }
}

第164~166行,通过header得到区块哈希和大端编码之后的区块号。第168行得到存储区块头对应区块号的key。169~171存储一对key-value。这样做的目的是通过区块头的哈希就可以快速查询到对应的区块号。接着173行对header数据进行rlp编码,177行通过numberhash构造可以直接查询hader数据的key,178行将数据存入数据库。

我们希望通过区块号,区块哈希查询到整个区块的数据,通过交易号查询交易的详细信息和交易的回执(receipt)信息。接下来分析这些数据是如何被查询到的。

通过区块号查询整个区块的数据

首先需要根据区块号构造查询key,看下面的这几个函数

// ReadCanonicalHash retrieves the hash assigned to a canonical block number.
func ReadCanonicalHash(db DatabaseReader, number uint64) common.Hash {
    data, _ := db.Get(headerHashKey(number))
    if len(data) == 0 {
        return common.Hash{}
    }
    return common.BytesToHash(data)
}

// ReadHeaderRLP retrieves a block header in its raw RLP database encoding.
func ReadHeaderRLP(db DatabaseReader, hash common.Hash, number uint64) rlp.RawValue {
    data, _ := db.Get(headerKey(number, hash))
    return data
}

// ReadBodyRLP retrieves the block body (transactions and uncles) in RLP encoding.
func ReadBodyRLP(db DatabaseReader, hash common.Hash, number uint64) rlp.RawValue {
    data, _ := db.Get(blockBodyKey(number, hash))
    return data
}

ReadCanonicalHash传入区块号可以得到区块头哈希,通过ReadHeaderRLP,传入区块头哈希和区块号就可以得到Header经过RLP编码之后的值,最后ReadBodyRLP传入同样的参数就可以得到header对应的body

至此,通过区块号查询整个区块信息的过程就理解清楚了。

通过区块哈希查询整个区块的数据

这个功能和通过区块号查询区块信息的过程基本类似,但是需要首先调用ReadheaderNumber函数得到这个header哈希对应的区块编号。

func ReadHeaderNumber(db DatabaseReader, hash common.Hash) *uint64 {
    data, _ := db.Get(headerNumberKey(hash))
    if len(data) != 8 {
        return nil
    }
    number := binary.BigEndian.Uint64(data)
    return &number
}

之后就是通过header hashnumber,调用ReadHeaderRLP, ReadBodyRLP得到整个区块的信息。

通过交易号查询交易详细信息

首先看交易信息是如何写入底层数据库的。

// TxLookupEntry is a positional metadata to help looking up the data content of
// a transaction or receipt given only its hash.
type TxLookupEntry struct {
    BlockHash  common.Hash
    BlockIndex uint64
    Index      uint64
}
// WriteTxLookupEntries stores a positional metadata for every transaction from
// a block, enabling hash based transaction and receipt lookups.
func WriteTxLookupEntries(db DatabaseWriter, block *types.Block) {
    for i, tx := range block.Transactions() {
        entry := TxLookupEntry{
            BlockHash:  block.Hash(),
            BlockIndex: block.NumberU64(),
            Index:      uint64(i),
        }
        data, err := rlp.EncodeToBytes(entry)
        if err != nil {
            log.Crit("Failed to encode transaction lookup entry", "err", err)
        }
        if err := db.Put(txLookupKey(tx.Hash()), data); err != nil {
            log.Crit("Failed to store transaction lookup entry", "err", err)
        }
    }
}

写入过程简单易懂,由交易号构造查询key,vaule对应一个TxLookupEntry。再看查询过程

func ReadTransaction(db DatabaseReader, hash common.Hash) (*types.Transaction, common.Hash, uint64, uint64) {
    blockHash, blockNumber, txIndex := ReadTxLookupEntry(db, hash)
    if blockHash == (common.Hash{}) {
        return nil, common.Hash{}, 0, 0
    }
    body := ReadBody(db, blockHash, blockNumber)
    if body == nil || len(body.Transactions) <= int(txIndex) {
        log.Error("Transaction referenced missing", "number", blockNumber, "hash", blockHash, "index", txIndex)
        return nil, common.Hash{}, 0, 0
    }
    return body.Transactions[txIndex], blockHash, blockNumber, txIndex
}
// ReadTxLookupEntry retrieves the positional metadata associated with a transaction
// hash to allow retrieving the transaction or receipt by hash.
func ReadTxLookupEntry(db DatabaseReader, hash common.Hash) (common.Hash, uint64, uint64) {
    data, _ := db.Get(txLookupKey(hash))
    if len(data) == 0 {
        return common.Hash{}, 0, 0
    }
    var entry TxLookupEntry
    if err := rlp.DecodeBytes(data, &entry); err != nil {
        log.Error("Invalid transaction lookup entry RLP", "hash", hash, "err", err)
        return common.Hash{}, 0, 0
    }
    return entry.BlockHash, entry.BlockIndex, entry.Index
}

查询交易信息可以通过交易哈希调用ReadTransaction直接查询,返回的数据是交易信息和这笔交易的位置信息。

查询交易回执信息

// ReadReceipts retrieves all the transaction receipts belonging to a block.
func ReadReceipts(db DatabaseReader, hash common.Hash, number uint64) types.Receipts {
    // Retrieve the flattened receipt slice
    data, _ := db.Get(blockReceiptsKey(number, hash))
    if len(data) == 0 {
        return nil
    }
    // Convert the revceipts from their storage form to their internal representation
    storageReceipts := []*types.ReceiptForStorage{}
    if err := rlp.DecodeBytes(data, &storageReceipts); err != nil {
        log.Error("Invalid receipt array RLP", "hash", hash, "err", err)
        return nil
    }
    receipts := make(types.Receipts, len(storageReceipts))
    for i, receipt := range storageReceipts {
        receipts[i] = (*types.Receipt)(receipt)
    }
    return receipts
}

// WriteReceipts stores all the transaction receipts belonging to a block.
func WriteReceipts(db DatabaseWriter, hash common.Hash, number uint64, receipts types.Receipts) {
    // Convert the receipts into their storage form and serialize them
    storageReceipts := make([]*types.ReceiptForStorage, len(receipts))
    for i, receipt := range receipts {
        storageReceipts[i] = (*types.ReceiptForStorage)(receipt)
    }
    bytes, err := rlp.EncodeToBytes(storageReceipts)
    if err != nil {
        log.Crit("Failed to encode block receipts", "err", err)
    }
    // Store the flattened receipt slice
    if err := db.Put(blockReceiptsKey(number, hash), bytes); err != nil {
        log.Crit("Failed to store block receipts", "err", err)
    }
}
// ReadReceipt retrieves a specific transaction receipt from the database, along with
// its added positional metadata.
func ReadReceipt(db DatabaseReader, hash common.Hash) (*types.Receipt, common.Hash, uint64, uint64) {
    blockHash, blockNumber, receiptIndex := ReadTxLookupEntry(db, hash)
    if blockHash == (common.Hash{}) {
        return nil, common.Hash{}, 0, 0
    }
    receipts := ReadReceipts(db, blockHash, blockNumber)
    if len(receipts) <= int(receiptIndex) {
        log.Error("Receipt refereced missing", "number", blockNumber, "hash", blockHash, "index", receiptIndex)
        return nil, common.Hash{}, 0, 0
    }
    return receipts[receiptIndex], blockHash, blockNumber, receiptIndex
}

原理和其他几个类似,在这里贴出了关键的源码。

总结

header, body, transaction, transactionReceipt 是分开存放的,不是根据区块号直接找到这个区块的所有数据,也不是根据header hash直接找到该区块的所有数据。以太坊在写入数据的时候会首先写入一些元信息,主要是在区块中的位置信息。例如在写入一笔交易信息的时候会首先写入它的位置信息(区块头哈希,区块号,交易所在区块体中的位置)。

你可能感兴趣的:(以太坊区块数据的持久化和查询)