.NET Core 3.0之深入源码理解ObjectPool(一)

写在前面

对象池是一种比较常用的提高系统性能的软件设计模式,它维护了一系列相关对象列表的容器对象,这些对象可以随时重复使用,对象池节省了频繁创建对象的开销。

它使用取用/归还-重复取用的操作模式,如下图所示:

.NET Core 3.0之深入源码理解ObjectPool(一)_第1张图片

本文将主要介绍对象池的基本概念、对象池的优势及其工作机制,下一篇文档将从源码角度介绍.NET Core 3.0是如何实现对象池的。

对象池基础

对象池的基本概念

对象池的核心概念是容器,其表示形式可以认为是列表。每当有新的对象创建请求进入时,都会通过从池中分配一个对象来满足该请求。当我们需要获取某个对象时,可以从池中获取。既然有了对象池,那么也就很方便我们就很容易建立起对象的管理与追踪了了。

.NET Core 3.0之深入源码理解ObjectPool(一)_第2张图片

对象池的优势

我们知道一旦应用程序启动并运行,内存使用就会受到系统所需对象的数量和大小的影响。

我们知道创建一个对象的实例,是需要消耗一定的系统资源,尤其是该对象的构造十分复杂的时候,再加上需要频繁创建的时候,其实例化所消耗的资源更加昂贵。如果我们能有一种办法减少这种昂贵的系统开销,这对系统性能的提升是十分有帮助的。

对象池理念的出现,有助于我们解决复杂对象的重复创建所引发的资源开销问题。对象存储在某种类型的列表或者说数组中,我们可以和获取数组中的子项一样获取已经存在在对象池中的对象。

对象池的最大优点是,它可以自主管理内部已经创建的对象,包括回收和重复使用对象。程序在使用完某个对象后,会将其发还至对象池,而不是在内存中销毁他们。

对象池通过资源的分配,因而也就减少了应用程序所需的垃圾回收数量。这对于需要频繁创建同一对象的功能来说,对象池最大程度地减少了系统资源的消耗。

简单来说,对象池的设计目标就是要使对象可以得到重复使用,而不是被垃圾回收器回收。

对象池的工作机制

当客户端程序需要某个对象时,对象池首先尝试提供一个已经创建的对象。如果没有可用的对象,则会创建一个新对象。这类似于一个GetOrAdd的操作​。同时对象池中对象的数量就会减少,直到该对象已经使用完,那么它就会被放回到对象池池中以等待使用。这就是为什么对象池有助于重用性、并减少了在获取对象时创建对象所涉及的开销的原因。

另外,需要注意的是,只要池中至少有一个对象,该池就会一直保留在内存中。只要对象池还在,里面的对象也会一直存在。

当对象池用于并发操作时,需要确保对象池是线程安全的,而且其本身还要有很高的性能。

ConcurrentBag对象池解决方案

这个解决方案来自于MSDN,ConcurrentBag 用于存储对象,因为它支持快速插入和删除,尤其是在同一线程同时添加和删除项目时。该示例可以进一步扩展为围绕IProducerConsumerCollection 构建,该数据由bag数据结构实现,ConcurrentQueue 和ConcurrentStack 也是如此。

   1:  using System;
   2:  using System.Collections.Concurrent;
   3:  using System.Threading;
   4:  using System.Threading.Tasks;
   5:   
   6:   
   7:  namespace ObjectPoolExample
   8:  {
   9:      public class ObjectPool
  10:      {
  11:          private ConcurrentBag _objects;
  12:          private Func _objectGenerator;
  13:   
  14:          public ObjectPool(Func objectGenerator)
  15:          {
  16:              if (objectGenerator == null) throw new ArgumentNullException("objectGenerator");
  17:              _objects = new ConcurrentBag();
  18:              _objectGenerator = objectGenerator;
  19:          }
  20:   
  21:          public T GetObject()
  22:          {
  23:              T item;
  24:              if (_objects.TryTake(out item)) return item;
  25:              return _objectGenerator();
  26:          }
  27:   
  28:          public void PutObject(T item)
  29:          {
  30:              _objects.Add(item);
  31:          }
  32:      }
  33:   
  34:      class Program
  35:      {
  36:         static void Main(string[] args)
  37:          {
  38:              CancellationTokenSource cts = new CancellationTokenSource();
  39:   
  40:              // Create an opportunity for the user to cancel.
  41:              Task.Run(() =>
  42:                  {
  43:                      if (Console.ReadKey().KeyChar == 'c' || Console.ReadKey().KeyChar == 'C')
  44:                          cts.Cancel();
  45:                  });
  46:   
  47:              ObjectPool pool = new ObjectPool (() => new MyClass());            
  48:   
  49:              // Create a high demand for MyClass objects.
  50:              Parallel.For(0, 1000000, (i, loopState) =>
  51:                  {
  52:                      MyClass mc = pool.GetObject();
  53:                      Console.CursorLeft = 0;
  54:                      // This is the bottleneck in our application. All threads in this loop
  55:                      // must serialize their access to the static Console class.
  56:                      Console.WriteLine("{0:####.####}", mc.GetValue(i));                 
  57:                      
  58:                      pool.PutObject(mc);
  59:                      if (cts.Token.IsCancellationRequested)
  60:                          loopState.Stop();                 
  61:   
  62:                  });
  63:              Console.WriteLine("Press the Enter key to exit.");
  64:              Console.ReadLine();
  65:              cts.Dispose();
  66:          }
  67:   
  68:      }
  69:   
  70:      // A toy class that requires some resources to create.
  71:      // You can experiment here to measure the performance of the
  72:      // object pool vs. ordinary instantiation.
  73:      class MyClass
  74:      {
  75:          public int[] Nums {get; set;}
  76:          public double GetValue(long i)
  77:          {
  78:              return Math.Sqrt(Nums[i]);
  79:          }
  80:          public MyClass()
  81:          {
  82:              Nums = new int[1000000];
  83:              Random rand = new Random();
  84:              for (int i = 0; i < Nums.Length; i++)
  85:                  Nums[i] = rand.Next();
  86:          }
  87:      }   
  88:  }

参考链接:https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/how-to-create-an-object-pool

你可能感兴趣的:(.NET Core 3.0之深入源码理解ObjectPool(一))