Hive-SQL

【RPM方式安装MYSQL】

[解压]

# cd /home/YITASQL/hadoop/mysql
# tar -xvf mysql-5.7.22-1.el7.x86_64.rpm-bundle.tar

[开始安装]

rpm -ivh mysql-community-common-5.7.22-1.el7.x86_64.rpm
rpm -ivh mysql-community-libs-5.7.22-1.el7.x86_64.rpm
rpm -ivh mysql-community-client-5.7.22-1.el7.x86_64.rpm
rpm -ivh mysql-community-devel-5.7.22-1.el7.x86_64.rpm
rpm -ivh mysql-community-embedded-5.7.22-1.el7.x86_64.rpm
rpm -ivh mysql-community-embedded-compat-5.7.22-1.el7.x86_64.rpm
rpm -ivh mysql-community-embedded-devel-5.7.22-1.el7.x86_64.rpm
rpm -ivh mysql-community-libs-compat-5.7.22-1.el7.x86_64.rpm
rpm -ivh mysql-community-server-5.7.22-1.el7.x86_64.rpm
rpm -ivh mysql-community-server-minimal-5.7.22-1.el7.x86_64.rpm
[错误]file /usr/share/mysql/czech/errmsg.sys from install of mysql-community-common-5.7.22-1.el7.x86_64 conflicts with file from package mariadb-libs-1:5.5.56-2.el7.x86_64
[解决方法]rpm -e mariadb-libs-1:5.5.56-2.el7.x86_64 --nodeps

【关闭selinux】

# setenforce 0 #临时,立即生效
#vi /etc/selinux/config
 SELINUX=disabled  #永久,重启生效

【修改MySQL初始密码】

[免验证]
# service mysqld stop 
# mysqld_safe –skip-grant-tables &
# mysql –uroot –p
[初始密码]
初始密码:
# grep 'temporary password' /var/log/mysqld.log
[root@jetflow205 mysql]# grep 'temporary password' /var/log/mysqld.log
2019-04-01T08:50:00.799172Z 1 [Note] A temporary password is generated for root@localhost: 1q+6p9OiO))p   #密码为 1q+6p9OiO))p
[修改密码]
mysql> use mysql; 
mysql> update user set password=PASSWORD("root")where user="root"; 
mysql> flush privileges; 
mysql> quit 
[重启/检查]
# service mysqld restart 
# mysql -uroot –proot
[建库/用户]
mysql> create database hive;
mysql> GRANT ALL PRIVILEGES ON *.* TO hive@'10.47.85.%' IDENTIFIED BY 'hive' WITH GRANT OPTION;
mysql> flush privileges; 
【报错】
[解决方案][由于mysql 默认的mysql.sock 是在/var/lib/mysql/mysql.sock,但linux系统总是去/tmp/mysql.sock查找]
# mysql --socket=/var/lib/mysql/mysql.sock [临时]
# ln -s /var/lib/mysql/mysql.sock /tmp/mysql.sock [永久]

【安装hive】

[解压]
# mkdir /home/YITASQL/hadoop/hive
# mv apache-hive-2.3.2-bin.tar.gz /home/YITASQL/hadoop/hive
# tar -zxvf apache-hive-2.3.2-bin.tar.gz
[修改配置]
# cd /home/YITASQL/hadoop/hive/conf
# cp hive-env.sh.template hive-env.sh
# vi hive-env.sh
添加配置:
export JAVA_HOME=/home/YITASQL/java
export HIVE_HOME=/home/YITASQL/hadoop/hive
export HADOOP_HOME=/home/YITASQL/hadoop
# vi hive-site.xml
新增文件/配置:
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
   <name>javax.jdo.option.ConnectionURL</name>
   <value>jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true</value>
   <description>JDBC connect string for a JDBC metastore </description>
</property>
<property>
   <name>javax.jdo.option.ConnectionDriverName</name>
   <value>com.mysql.jdbc.Driver</value>
</property>
<property>
   <name>javax.jdo.option.ConnectionUserName</name>
   <value>root</value>
</property>
<property>
   <name>javax.jdo.option.ConnectionPassword</name>
   <value>123456</value>
</property>
<property>
        <name>hive.querylog.location</name>
        <value>/home/YITASQL/hadoop/hive/tmp</value>
</property>
<property>
        <name>hive.exec.local.scratchdir</name>
        <value>/home/YITASQL/hadoop/hive/tmp</value>
</property>
<property>
        <name>hive.downloaded.resources.dir</name>
        <value>/home/YITASQL/hadoop/hive/tmp</value>
</property>
<property>
        <name>datanucleus.schema.autoCreateAll</name>
        <value>true</value>
</property>
</configuration>
[MYSQL-JDBC驱动]
文件上传到:/home/YITASQL/hadoop/hive/lib/mysql-connector-java-5.1.32.jar 
[环境变量]
export HIVE_HOME=/home/YITASQL/hadoop/hive
export PATH=$PATH:$HIVE_HOME/bin
[初始化]
首次执行初始化:
>hive的bin目录下执行schematool脚本 [ ./schematool -dbType mysql -initSchema ]
查看初始化信息:schematool -dbType mysql -info
【远程服务启动】【不需要】
# cd /home/YITASQL/hadoop/hive/bin
# nohup hive –-service hiveserver2 
[调试模式][定位环境问题使用]
./hive -hiveconf hive.root.logger=DEBUG,console [非调试模式不加参数即可]
【hive建表】
[多字段]
create table SQLData_1G 
(id int,
name string,
age int,
department string,
job_number bigint,
time date,
on_the_job boolean
) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' 
location '/hive1';
[单字段]
create table S4M (line string) ROW FORMAT DELIMITED location '/flume';
【数据导入】
hadoop fs -put SQLData_100M.txt /hive/sqldata_100m
【查询SQL】
hive -e 'select * from sqldata_100m limit 10'  
hive -e "use source;select * from sqldata_100m where id<10 order by id;" >user_base.txt
【对比表数据】
select count(*) from sqldata_300m a left outer join sqldata_400m b on a.line=b.line where b.line is null;  join左为样本数据,右为yita数据;
select a.* from sqldata_300m a left outer join sqldata_400m b on a.line=b.line where b.line is null;

你可能感兴趣的:(Hive)