深度学习AI美颜系列----AI美发算法(美妆相机/天天P图染发特效)

给照片或者视频中的人物头发换颜色,这个技术已经在手机app诸如天天P图,美图秀秀等应用中使用,并获得了不少用户的青睐。

如何给照片或者视频中的人物头发换发色?

换发色算法流程如下图所示:

深度学习AI美颜系列----AI美发算法(美妆相机/天天P图染发特效)_第1张图片

1,AI头发分割模块

基于深度学习的目标分割算法已经比较成熟,比较常用的有FCN,SegNet,UNet,PspNet,DenseNet等等。

这里我们使用Unet网络来进行头发分割,具体可以参考如下链接:点击打开链接

Unet头发分割代码如下:

def get_unet_256(input_shape=(256, 256, 3),
                 num_classes=1):
    inputs = Input(shape=input_shape)
    # 256
 
    down0 = Conv2D(32, (3, 3), padding='same')(inputs)
    down0 = BatchNormalization()(down0)
    down0 = Activation('relu')(down0)
    down0 = Conv2D(32, (3, 3), padding='same')(down0)
    down0 = BatchNormalization()(down0)
    down0 = Activation('relu')(down0)
    down0_pool = MaxPooling2D((2, 2), strides=(2, 2))(down0)
    # 128
 
    down1 = Conv2D(64, (3, 3), padding='same')(down0_pool)
    down1 = BatchNormalization()(down1)
    down1 = Activation('relu')(down1)
    down1 = Conv2D(64, (3, 3), padding='same')(down1)
    down1 = BatchNormalization()(down1)
    down1 = Activation('relu')(down1)
    down1_pool = MaxPooling2D((2, 2), strides=(2, 2))(down1)
    # 64
 
    down2 = Conv2D(128, (3, 3), padding='same')(down1_pool)
    down2 = BatchNormalization()(down2)
    down2 = Activation('relu')(down2)
    down2 = Conv2D(128, (3, 3), padding='same')(down2)
    down2 = BatchNormalization()(down2)
    down2 = Activation('relu')(down2)
    down2_pool = MaxPooling2D((2, 2), strides=(2, 2))(down2)
    # 32
 
    down3 = Conv2D(256, (3, 3), padding='same')(down2_pool)
    down3 = BatchNormalization()(down3)
    down3 = Activation('relu')(down3)
    down3 = Conv2D(256, (3, 3), padding='same')(down3)
    down3 = BatchNormalization()(down3)
    down3 = Activation('relu')(down3)
    down3_pool = MaxPooling2D((2, 2), strides=(2, 2))(down3)
    # 16
 
    down4 = Conv2D(512, (3, 3), padding='same')(down3_pool)
    down4 = BatchNormalization()(down4)
    down4 = Activation('relu')(down4)
    down4 = Conv2D(512, (3, 3), padding='same')(down4)
    down4 = BatchNormalization()(down4)
    down4 = Activation('relu')(down4)
    down4_pool = MaxPooling2D((2, 2), strides=(2, 2))(down4)
    # 8
 
    center = Conv2D(1024, (3, 3), padding='same')(down4_pool)
    center = BatchNormalization()(center)
    center = Activation('relu')(center)
    center = Conv2D(1024, (3, 3), padding='same')(center)
    center = BatchNormalization()(center)
    center = Activation('relu')(center)
    # center
 
    up4 = UpSampling2D((2, 2))(center)
    up4 = concatenate([down4, up4], axis=3)
    up4 = Conv2D(512, (3, 3), padding='same')(up4)
    up4 = BatchNormalization()(up4)
    up4 = Activation('relu')(up4)
    up4 = Conv2D(512, (3, 3), padding='same')(up4)
    up4 = BatchNormalization()(up4)
    up4 = Activation('relu')(up4)
    up4 = Conv2D(512, (3, 3), padding='same')(up4)
    up4 = BatchNormalization()(up4)
    up4 = Activation('relu')(up4)
    # 16
 
    up3 = UpSampling2D((2, 2))(up4)
    up3 = concatenate([down3, up3], axis=3)
    up3 = Conv2D(256, (3, 3), padding='same')(up3)
    up3 = BatchNormalization()(up3)
    up3 = Activation('relu')(up3)
    up3 = Conv2D(256, (3, 3), padding='same')(up3)
    up3 = BatchNormalization()(up3)
    up3 = Activation('relu')(up3)
    up3 = Conv2D(256, (3, 3), padding='same')(up3)
    up3 = BatchNormalization()(up3)
    up3 = Activation('relu')(up3)
    # 32
 
    up2 = UpSampling2D((2, 2))(up3)
    up2 = concatenate([down2, up2], axis=3)
    up2 = Conv2D(128, (3, 3), padding='same')(up2)
    up2 = BatchNormalization()(up2)
    up2 = Activation('relu')(up2)
    up2 = Conv2D(128, (3, 3), padding='same')(up2)
    up2 = BatchNormalization()(up2)
    up2 = Activation('relu')(up2)
    up2 = Conv2D(128, (3, 3), padding='same')(up2)
    up2 = BatchNormalization()(up2)
    up2 = Activation('relu')(up2)
    # 64
 
    up1 = UpSampling2D((2, 2))(up2)
    up1 = concatenate([down1, up1], axis=3)
    up1 = Conv2D(64, (3, 3), padding='same')(up1)
    up1 = BatchNormalization()(up1)
    up1 = Activation('relu')(up1)
    up1 = Conv2D(64, (3, 3), padding='same')(up1)
    up1 = BatchNormalization()(up1)
    up1 = Activation('relu')(up1)
    up1 = Conv2D(64, (3, 3), padding='same')(up1)
    up1 = BatchNormalization()(up1)
    up1 = Activation('relu')(up1)
    # 128
 
    up0 = UpSampling2D((2, 2))(up1)
    up0 = concatenate([down0, up0], axis=3)
    up0 = Conv2D(32, (3, 3), padding='same')(up0)
    up0 = BatchNormalization()(up0)
    up0 = Activation('relu')(up0)
    up0 = Conv2D(32, (3, 3), padding='same')(up0)
    up0 = BatchNormalization()(up0)
    up0 = Activation('relu')(up0)
    up0 = Conv2D(32, (3, 3), padding='same')(up0)
    up0 = BatchNormalization()(up0)
    up0 = Activation('relu')(up0)
    # 256
 
    classify = Conv2D(num_classes, (1, 1), activation='sigmoid')(up0)
 
    model = Model(inputs=inputs, outputs=classify)
 
    #model.compile(optimizer=RMSprop(lr=0.0001), loss=bce_dice_loss, metrics=[dice_coeff])
 
return model

分割效果举例如下:

深度学习AI美颜系列----AI美发算法(美妆相机/天天P图染发特效)_第2张图片

使用的训练和测试数据集合大家自己准备即可。

2,头发换色模块

这个模块看起来比较简单,实际上却并非如此。

这个模块要细分为①头发颜色增强与修正模块;②颜色空间染色模块;③头发细节增强;

①头发颜色增强与修正模块

为什么要颜色增强与修正?

先看下面一组图,我们直接使用HSV颜色空间对纯黑色的头发进行染色,目标色是紫色,结果如下:

深度学习AI美颜系列----AI美发算法(美妆相机/天天P图染发特效)_第3张图片

大家可以看到,针对上面这张原图,头发比较黑,在HSV颜色空间进行头发换色之后,效果图中很不明显,只有轻微的颜色变化;

为什么会出现这种情况?原因如下:

我们以RGB和HSV颜色空间为例,首先来看下HSV和RGB之间的转换公式:

设 (r, g, b)分别是一个颜色的红、绿和蓝坐标,它们的值是在0到1之间的实数。设max等价于r, g和b中的最大者。设min等于这些值中的最小者。要找到在HSL空间中的 (h, s, l)值,这里的h ∈ [0, 360)度是角度的色相角,而s, l ∈ [0,1]是饱和度和亮度,计算为:

深度学习AI美颜系列----AI美发算法(美妆相机/天天P图染发特效)_第4张图片

我们假设头发为纯黑色,R=G=B=0,那么按照HSV计算公式可以得到H = S = V = 0;

假设我们要把头发颜色替换为红色(r=255,g=0,b=0);

那么,我们先将红色转换为对应的hsv,然后保留原始黑色头发的V,红色头发的hs,重新组合新的hsV,在转换为RGB颜色空间,即为头发换色之后的效果(hs是颜色属性,v是明度属性,保留原始黑色头发的明度,替换颜色属性以达到换色目的);

HSV转换为RGB的公式如下:

深度学习AI美颜系列----AI美发算法(美妆相机/天天P图染发特效)_第5张图片

对于黑色,我们计算的结果是H=S=V=0,由于V=0,因此,p=q=t=0,不管目标颜色的hs值是多少,rgb始终都是0,也就是黑色;

这样,虽然我们使用了红色,来替换黑色头发,但是,结果却依旧是黑色,结论也就是hsv/hsl颜色空间,无法对黑色换色。

下面,我们给出天天P图和美妆相机对应紫色的换发色效果:

深度学习AI美颜系列----AI美发算法(美妆相机/天天P图染发特效)_第6张图片

与之前HSV颜色空间的结果对比,我们明显可以看到,天天P图和美妆相机的效果要更浓,更好看,而且对近乎黑色的头发进行了完美的换色;

由于上述原因,我们这里需要对图像中的头发区域进行一定的增强处理:提亮,轻微改变色调;

这一步通常可以在PS上进行提亮调色,然后使用LUT来处理;

经过提亮之后的上色效果如下图所示:

深度学习AI美颜系列----AI美发算法(美妆相机/天天P图染发特效)_第7张图片

可以看到,基本与美妆相机和天天P图类似了。

②HSV/HSL/YCbCr颜色空间换色

这一步比较简单,保留明度分量不变,将其他颜色、色调分量替换为目标发色就可以了。

这里以HSV颜色空间为例:

假如我们要将头发染发为一半青色,一般粉红色,那么我们构建如下图所示的颜色MAP:

深度学习AI美颜系列----AI美发算法(美妆相机/天天P图染发特效)_第8张图片

对于头发区域的每一个像素点P,我们将P的RGB转换为HSV颜色空间,得到H/S/V;

根据P在原图头发区域的位置比例关系,我们在颜色MAP中找到对应位置的像素点D,将D的RGB转换为HSV颜色空间,得到目标颜色的h/s/v;

根据目标颜色重组hsV,然后转为RGB即可;

这一模块代码如下:

// h = [0,360], s = [0,1], v = [0,1]
void RGBToHSV(int R, int G, int B, float* h, float* s, float * v)
{
	float min, max;
	float r = R / 255.0f;
	float g = G / 255.0f;
	float b = B / 255.0f;
    min = MIN2(r,MIN2(g,b));
    max = MAX2(r,MAX2(g,b));
    if (max == min)
        *h = 0;
    if (max == r && g >= b)
        *h = 60.0f * (g - b) / (max - min);
    if (max == r && g < b)
        *h = 60.0f * (g - b) / (max - min) + 360.0f;
   
    if (max == g)
        *h = 60.0f * (b - r) / (max - min) + 120.0f;
    if (max == b)
        *h = 60.0f * (r - g) / (max - min) + 240.0f;
    
    if (max == 0)
        *s = 0;
    else
        *s = (max - min) / max;
    *v = max;
};
void HSVToRGB(float h, float s, float v, int* R, int *G, int *B)
{
	float q = 0, p = 0, t = 0, r = 0, g = 0, b = 0;
    int hN = 0;
    if (h < 0)
        h = 360 + h;
    hN = (int)(h / 60);
    p = v * (1.0f - s);
    q = v * (1.0f - (h / 60.0f - hN) * s);
    t = v * (1.0f - (1.0f - (h / 60.0f - hN)) * s);
    switch (hN)
    {
    case 0:
        r = v;
        g = t;
        b = p;
        break;
    case 1:
        r = q;
        g = v;
        b = p;
        break;
    case 2:
        r = p;
        g = v;
        b = t;
        break;
    case 3:
        r = p;
        g = q;
        b = v;
        break;
    case 4:
        r = t;
        g = p;
        b = v;
        break;
    case 5:
        r = v;
        g = p;
        b = q;
        break;
    default:
        break;
    }
    *R = (int)CLIP3((r * 255.0f),0,255);
    *G = (int)CLIP3((g * 255.0f),0,255);
    *B = (int)CLIP3((b * 255.0f),0,255);
};

效果图如下所示:

深度学习AI美颜系列----AI美发算法(美妆相机/天天P图染发特效)_第9张图片

本文算法对比美妆相机效果如下:

深度学习AI美颜系列----AI美发算法(美妆相机/天天P图染发特效)_第10张图片

③头发区域增强

这一步主要是为了突出头发丝的细节,可以使用锐化算法,如Laplace锐化,USM锐化等等。

上述过程基本是模拟美妆相机染发算法的过程,给大家参考一下,最后给出本文算法的一些效果举例:

深度学习AI美颜系列----AI美发算法(美妆相机/天天P图染发特效)_第11张图片

本文效果除了实现正常的单色染发,混合色染发之外,还实现了挑染,如最下方一组效果图所示。

对于挑染的算法原理:

计算头发纹理,根据头发纹理选取需要挑染的头发束,然后对这些头发束与其他头发分开染色即可,具体逻辑这里不再累赘,大家自行研究,这里给出解决思路供大家参考。

最后,本文算法理论上实时处理是没有问题的,头发分割已经可以实时处理,所以后面基本没有什么耗时操作,使用opengl实现实时染发是没有问题的。

本人QQ1358009172

 

 

 

你可能感兴趣的:(深度学习AI美颜系列)