- 机器学习学习笔记(吴恩达)(第三课第一周)(无监督算法,K-means、异常检测)
kgbkqLjm
吴恩达机器学习2022机器学习算法学习
欢迎聚类算法:无监督学习:聚类、异常检测推荐算法:强化学习:聚类(Clustering)聚类算法:查看大量数据点并自动找到彼此相关或相似的数据点。是一种无监督学习算法聚类与二院监督学习算法对比:无监督:(聚类是无监督学习算法之一)聚类算法应用:如相似的新闻文章组合,市场细分,DNA数据分析,天文数据分析(星系、天体结构)K-means算法是一种常用的聚类算法原理概述【K-means工作原理过程】(
- 机器学习学习笔记(八)多项式回归与模型泛化
下雨天的小白鞋
对非线性的数据进行处理,相应的预测----添加新的特征:原有的特征进行多项式组合scikit-learn中的多项式回归PolynomialFeatures构建特征导包:fromsklearn.preprocessingimportPolynomialFeatures实例:poly=PolynomialFeatures(degree=2)##最多二次幂特征poly.fit(X)X2=poly.tra
- 机器学习学习笔记——数学篇
小胡爱喝水
机器学习
数学中常见的argmin,argmax表示的是什么意思arg是英文单词argument(自变量)的缩写,所以从字面意义上也就可以看出其代表的意思就是求对应自变量的最大最小值。例如:(w∗,b∗w^*,b^*w∗,b∗)=argmin∑1m\sum_1^m∑1m(f(xi)−yif(x_i)-y_if(xi)−yi)求均方误差最小化时的w∗,b∗w^*,b^*w∗,b∗。argmax类似。
- 机器学习学习笔记(3)——量纲与无量纲,标准化、归一化、正则化
野指针小李
数学机器学习机器学习标准化归一化正则化量纲
量纲、无量纲,标准化、归一化、正则化是我百度了很多次都不进脑子的知识,所以我决定还是放在博客上面。不过鉴于我查阅了很多资料,说是有许多的坑,所以我也不清楚我的理解和解释是否是坑,具体的就留给各位来帮忙评判了!目录1量纲与无量纲1.1量纲1.2无量纲2标准化3归一化4正则化5总结6参考1量纲与无量纲1.1量纲量纲我觉得最重要的一句话是:物理量的大小与单位有关。从这句话我们来思考下最核心的两个单词:大
- 机器学习学习笔记 1 Bagging模型
锋锋的快乐小窝
机器学习学习笔记机器学习笔记决策树
Bagging模型Bagging全称(bootstrapaggregation)并行训练一堆分类器的集成方法。每个基模型可以分别、独立、互不影响地生成最典型的代表就是随机森林随机:数据采样随机,特征选择随机森林:很多决策树并行放在一起由于二重随机性,使得每个树基本上都不会一样,最终的结果也会不一样之所以随机选择,是要保证泛化能力,如果树都一样,那就失去参考价值随机森林(RF)的优势:它能够处理很高
- 李宏毅机器学习学习笔记——自注意力机制
jolando
学习笔记机器学习深度学习
self-attention应用场景为什么要使用Self-attention?Self-attention计算过程PositionalEncodingSelf-attention的变体Multi-headSelf-attentionTruncatedSelf-attentionSelf-attention与其他神经网络的比较Self-attentionv.s.CNNSelf-attentionv.
- 机器学习学习笔记——第一章:绪论
福旺旺
机器学习机器学习
机器学习机器学习学习笔记——第一章:绪论文章目录机器学习机器学习学习笔记——第一章:绪论机器学习即为构建一个机器调参的映射函数。要进行机器学习,先要有数据。一、基础术语1.1、数据准备阶段1.2、学得模型阶段1.3、测试模型阶段1.4、典型的机器学习过程1.5、总结二、假设空间三、归纳偏好四、机器学习理论五、机器学习的现实应用机器学习即为构建一个机器调参的映射函数。要进行机器学习,先要有数据。一、
- 机器学习学习笔记——第二章:模型评估与选择
福旺旺
机器学习机器学习人工智能
机器学习机器学习学习笔记——第二章:模型评估与选择文章目录机器学习一、经验误差与过拟合1.1、经验误差与泛化误差1.2、过拟合与欠拟合二、三个问题三、评估方法3.1、留出法(hold-out)3.2、k折-交叉验证法(k-foldcrossvalidation)3.3、自助法(bootstrap)3.4、调参与最终模型四、性能度量4.1、错误率与精度4.2、查准率、查全率与F14.3、ROC与AU
- Python机器学习实践(一)多项式拟合(简单房价预测)
AiTingDeTong
Python机器学习python机器学习人工智能数据分析
Python机器学习学习笔记与实践环境:win10+Anaconda3.8例子一源自《Python与机器学习实战》—何宇健任务:现有47个房子的面积和价格,需要建立一个模型对房价进行预测。1、获取和处理数据房子的面积与价格对应的数据点击下面获得:点击此处获取导入库,并读取文本文件的数据:importnumpyasnpimportmatplotlib.pyplotasplt#读取房子面积和对应的价格
- 【机器学习学习笔记】机器学习入门&监督学习
MikeBennington
机器学习学习笔记机器学习学习人工智能
1.机器学习入门1.1WhatisMachineLearning?"Fieldofstudythatgivescomputerstheabilitytolearnwithoutbeingexplicitlyprogrammed."——ArthurSamuel(1959)亚瑟·萨缪尔:跳棋程序编写者常用机器学习算法:Supervisedlearning(moreimportant)Unsupervi
- 【李宏毅机器学习】Gradient Descent_1 梯度下降(p5、p6、p7 )学习笔记
duanyuchen
MachineLearning机器学习李宏毅学习笔记
李宏毅机器学习学习笔记汇总课程链接文章目录ReviewGradientDescentTipsTip1:Tuningyourlearningrate小心微调你的学习率Tip2StochasticGradientDescentSGD随机梯度下降Tip3FeatureScaling特征缩放GradientDescentReview在第三步,找一个最好的function,解一个optimization最优
- python机器学习学习笔记(六)
weixin_46753186
python机器学习python数据分析支持向量机机器学习
支持向量机分类实例:用SVM分类器对Iris数据集分析并绘制分类图1.线性importnumpyasnpimportmatplotlib.pyplotaspltfromsklearnimportsvm,datasetsiris=datasets.load_iris()x=iris.data[:,:2]#iris数据萼片的长和宽y=iris.targetsvc=svm.SVC(kernel='lin
- 机器学习学习笔记(二)环境搭建
下雨天的小白鞋
语言基础:Python3IDE:Pycharm集成环境:anacoda一.Anacoda下载地址:https://www.anaconda.com/download/下载页面下载-安装安装成功后打开AnacondaNavigator选择jupyterlaunch等会会出现二.Pycharm下载地址:https://www.jetbrains.com/pycharm/download/#sectio
- 机器学习学习笔记(一)基础
下雨天的小白鞋
一.开发环境框架:scikit-learn工具:pycharm,ANACONDA二.开发基础2.1概念数据集下载:scikit-learn内置数据集或者直接下载的数据集:数据整体样本:每一行数据特征:除最后一列,每一列表达样本的一个特征标记:最后一列特征值、特征向量、特征空间2.2基本任务:分类任务、回归任务2.2.1分类任务二分类任务:例如:判断邮件是否为垃圾邮件多分类任务:图像识别,数字识别多
- 机器学习学习笔记2(Ng课程cs229)
-慢慢-
AI机器学习学习笔记cs229高斯混合模型朴素贝叶斯
牛顿方法简单的来说就是通过求当前点的导数得到下一个点.用到的性质是导数值等于该点切线和横轴夹角的正切值.极大似然估计收敛速度:quadraticconversions二次收敛θ为矩阵时每次迭代都需要重新计算H->nxn特征较多时计算量比较大极大似然估计可以推导:高斯分布=>最小二乘法伯努利分布=>logistic回归指数分布族exponentialfamilydistributionp(y;η)=
- python机器学习学习笔记——学习资源汇总
那么CHEN
pythonpython机器学习人工智能编程语言大数据
参考资料Python集成开发环境(IDE)[1]IDLE:Python解释器默认工具[2]VisualStudioCode:https://code.visualstudio.com/[3]PyCharm:https://www.jetbrains.com/pycharm/[4]Anaconda:https://www.continuum.io/参考教程[1]《Python语言程序设计基础(第2版
- 机器学习学习笔记之——模型评估与改进之交叉验证和网格搜索
前丨尘忆·梦
tensorflow深度学习机器学习
交叉验证与网格搜索前面讨论了监督学习和无监督学习的基本原理,并探索了多种机器学习算法,本章我们深入学习模型评估与参数选择。我们将重点介绍监督方法,包括回归与分类,因为在无监督学习中,模型评估与选择通常是一个非常定性的过程。到目前为止,为了评估我们的监督模型,我们使用train_test_split函数将数据集划分为训练集和测试集,在训练集上调用fit方法来构建模型,并且在测试集上用score方法来
- python机器学习学习笔记(五)
weixin_46753186
python机器学习python机器学习支持向量机数据分析
非线性支持向量机分类1.三次多项式用多项式曲线把决策空间分成两部分kernel='poly',degree为多项式次数importnumpyasnpimportmatplotlib.pyplotaspltfromsklearnimportsvmx=np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],[2,1],[3,1],[3,2],[3.5
- 机器学习学习笔记week1
yangqingao
深度学习机器学习
week11引言1.1机器学习是什么?1.2监督学习1.3无监督学习2单变量线性回归2.1模型表示2.2代价函数2.3代价函数的直观理解I2.4代价函数的直观理解II2.5梯度下降2.6梯度下降的直观理解2.7梯度下降的线性回归3线性代数回顾3.1矩阵和向量3.2加法和标量乘法3.3矩阵向量乘法3.4矩阵乘法3.5矩阵乘法的性质3.6逆、转置1引言1.1机器学习是什么?ArthurSamuel:在
- 机器学习 学习笔记(持续更新)
Include everything
学习算法
机器学习学习笔记一、导论1.1什么是机器学习? 机器学习是在没有明确设置的情况下使计算机具有学习能力的研究领域。(ArthurSamuel-1959) 计算机程序从经验E(计算机自己与自己下成千上百万次棋)中学习,解决某一任务T(下跳棋),进行某一性能度量P(与新对手玩跳棋时赢的概率),通过P测定在T上的表现因经验E而提高的程度。(TomMitchell-1998) 机器学习算法最主要分为监
- 机器学习学习笔记(1)
后季暖
字典特征提取第一列表示北京第二列表示上海第三列表示深圳第四列表示温度前面三列是的话用1不是的话用0什么时候用稀疏矩阵:比如上面这种情况当你的城市很多的情况下那这样就会出现大量的0而系数矩阵只存储不是0的位置可以节省大量空间为什么采用这种表示方法呢?首先我们来看假如要分类:人是1企鹅是2章鱼是3那么这样数字表示的就存在优先级不如按这种办法来pclass是一等舱二等舱三等舱这种字典特征抽取的应用场景:
- 机器学习学习笔记——batchsize越大越好?
phily123
机器学习学习笔记深度学习神经网络机器学习
batchsize不是越大越好使用mini-batch好处:提高了运行效率,相比batch-GD的每个epoch只更新一次参数,使用mini-batch可以在一个epoch中多次更新参数,加速收敛。解决了某些任务中,训练集过大,无法一次性读入内存的问题。虽然第一点是mini-batch提出的最初始的原因,但是后来人们发现,使用mini-batch还有个好处,即每次更新时由于没有使用全量数据而仅仅使
- 机器学习学习笔记(一)
图南zzz
python机器学习人工智能算法
目录机器学习笔记(一)一、模型评估二、监督学习三、无监督学习四、单变量线性回归(LinearRegressionwithOneVariable)3.1代价函数(平方误差函数)(损失函数)3.2梯度下降3.3梯度下降的线性回归五、多变量线性回归(LinearRegressionwithMultipleVariables)4.1多维特征4.2多变量梯度下降4.3梯度下降之特征缩放六、正规方程六、逻辑回
- 机器学习学习笔记之——监督学习之线性模型
前丨尘忆·梦
tensorflow深度学习机器学习
线性模型线性模型利用输入特征的线性函数(linearfunction)进行预测。1、用于回归的线性模型对于回归问题,线性模型预测的一般公式如下:y^=w[0]∗x[0]+w[1]∗x[1]+...+w[p]∗x[p]+b\hat{y}=w[0]*x[0]+w[1]*x[1]+...+w[p]*x[p]+by^=w[0]∗x[0]+w[1]∗x[1]+...+w[p]∗x[p]+b这里x[0]到x[
- 机器学习学习笔记(一)——多元线性回归(Multivariate Linear Regression)
lancetop-stardrms
机器学习机器学习
多元线性回归(multivariatelinearregression):在线性回归问题(Linearregression)中,引入多个特征变量(MultipleFeatures)作为输入,也被称为“多元线性回归(MultivariateLinearRegression)”.符号定义:假设函数(hypothesisfunction):Themultivariableformofthehypothe
- 吴恩达机器学习学习笔记——Week 2——多元线性回归(Multivariate Linear Regression)
预见未来to50
机器学习深度学习(MLDeepLearning)
一、课件及课堂练习1.多个特征值(多变量)课堂练习:2.多元梯度下降课堂练习:3.梯度下降实践1——特征值缩放(均值归一化)课堂练习:4.梯度下降实践2——学习率课堂练习:5.特征数量及多项式回归课堂练习:6.标准方程课堂练习:7.标准方程法可能遇到不可逆问题二、内容概要1.多个特征值2.多元梯度下降3.梯度下降实践1——特征值缩放4.梯度下降实践2——学习率5.特征数量及多项式回归6.标准方程7
- 机器学习学习笔记之:loss function损失函数及activation function激活函数
csdshelton
之所以把损失函数和激活函数放在一起做个总结,是因为本身这两都带函数,都是机器学习中的内容,很容易混在一起,第二点,这两者总是一起出现,根据任务的不同,可能出现不同的排列组合。因此想一起整理一下。不同的机器学习方法的损失函数DifferentLossfunctionsfordifferentmachinelearningMethods不同的机器学习方法,损失函数不一样,quadraticloss(平
- Python机器学习学习笔记之——引言
前丨尘忆·梦
tensorflow深度学习机器学习
引言mglearn库的下载地址:链接:https://pan.baidu.com/s/1FkRGBFgtjqsZTikLEJbtzg提取码:4db0机器学习是从数据中提取知识。它是统计学、人工智能和计算机科学交叉的研究领域,也被称为预测分析或统计学习。1、为何选择机器学习在“智能”应用早期,许多系统使用人为制定的“if”和“else”决策规则来处理数据,或根据用户输入的内容进行调整。但人为制定决策
- 《机器学习》周志华(西瓜书)学习笔记 第八章 集成学习
Sundm@lhq
机器学习西瓜书学习笔记机器学习学习笔记集成学习周志华
机器学习学习笔记4总目录第八章集成学习8.1个体与集成集成学习(ensemblelearning)通过构建并结合多个学习器来完成学习任务,有时也被称为多分类器系统(multi-classifiersystem)、基于委员会的学习(committee-basedlearning)等.集成学习的一般结构:先产生一组"个体学习器"(individuallearner),再用某种策略将它们结合起来。同质集
- 【李宏毅机器学习】Recurrent Neural Network Part1 循环神经网络(p20) 学习笔记
duanyuchen
MachineLearning机器学习李宏毅学习笔记
李宏毅机器学习学习笔记汇总课程链接文章目录ExampleApplicationSlotFilling把词用向量来表示的方法1-of-Nencoding/one-hotBeyond1-of-Nencoding存在的问题RecurrentNeuralNetwork(RNN)ExampleRNN处理slotsfilling问题Ofcourseitcanbedeep...RNN的变形ElmanNetwor
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite