Yarn在Shuffle阶段内存不足问题(error in shuffle in fetcher)

最近在迁移job到新集群hadoop2.4,业务方在跑一个hql的时候shuffle阶段出现OOM,这个问题之前从来没有遇到过,看了一下相关日志和counter,看不出个所以然,在网上搜索了一下,发现网友也遇到过相同的问题,以下是转载的该问题的解决方法:

=====================================================================

在Hadoop集群(CDH4.4, Mv2即Yarn框架)使用过程中,发现处理大数据集时程序报出如下错误:

13/12/02 20:02:06 INFO mapreduce.Job: map 100% reduce 2%
13/12/02 20:02:18 INFO mapreduce.Job: Task Id : attempt_1385983958793_0001_r_000000_1, Status : FAILED
Error: org.apache.hadoop.mapreduce.task.reduce.Shuffle$ShuffleError: error in shuffle in fetcher#1
at org.apache.hadoop.mapreduce.task.reduce.Shuffle.run(Shuffle.java:121)
at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:379)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:157)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1408)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:152)
Caused by: java.lang.OutOfMemoryError: Java heap space
at org.apache.hadoop.io.BoundedByteArrayOutputStream.(BoundedByteArrayOutputStream.java:58)
at org.apache.hadoop.io.BoundedByteArrayOutputStream.(BoundedByteArrayOutputStream.java:45)
at org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput.(InMemoryMapOutput.java:63)
at org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl.unconditionalReserve(MergeManagerImpl.java:297)
at org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl.reserve(MergeManagerImpl.java:287)
at org.apache.hadoop.mapreduce.task.reduce.Fetcher.copyMapOutput(Fetcher.java:360)
at org.apache.hadoop.mapreduce.task.reduce.Fetcher.copyFromHost(Fetcher.java:295)
at org.apache.hadoop.mapreduce.task.reduce.Fetcher.run(Fetcher.java:154)

Google一番后居然无果!程序等着运行,老板催着要结果,没有大师协助,只能开始艰难地自救了!认真分析,求助于源代码!

首先发现的一点是:map任务百分比一直在递增,出现reduce任务之后,每隔一段时间报一个类似上面的错误,reduce从0%重新开始,而Map任务继续前进,reduce处理一段后再报,再从0开始。累计到第四个报错后即整个Application宣布Fail。

根据这一点,大致可以得出这样的结论:

  1. reduce任务每次尝试都失败了,失败后重新开始;
  2. reduce任务失败累计4次后整个Application退出,应该是设置了最大重试次数之类的配置项。
  3. map任务与reduce任务是隔离的,之间不会干扰。这个从map、reduce任务原理也可以了解到。

基于这一点,首先查询到map-site.xml中的配置项mapreduce.reduce.maxattempts,表示Reduce Task最大失败尝试次数,这个配置默认是4,调整到400后接着尝试。

mapreduce.reduce.maxattempts起了作用,但是报错依然不断,不过不会4次报错就结束了,map进度一直向前,map到达100%后,reduce依然重复报错的节奏。是时候查查这里报错的类究竟在做啥了。

org.apache.hadoop.mapreduce.task.reduce.Fetcher类位于hadoop-mapreduce-client-core-2.0.0-cdh4.4.0.jar包中,Maven的话在pom.xml添加如下配置,可以获取该包以及源码:

org.apache.hadoop
hadoop-mapreduce -client-core
2.0.0-cdh4.4.0

问题的入口是run中的:

// Shuffle
copyFromHost(host);

跟踪到copyMapOutput,是要准备从Map节点本地拷贝map的output进行shuffle。其中出错点:

// Get the location for the map output – either in-memory or on-disk
mapOutput = merger.reserve(mapId, decompressedLength, id );

merger指向了MergeManagerImpl对象,调用其reserve函数,而这个函数中定义了shuffle的处理方式,是将output塞入内存(InMemoryMapOutput)还是放在磁盘上慢慢做(OnDiskMapOutput)?

从我们这边的出错信息,显然可以看到任务选择了InMemoryMapOutput,在检查为什么作出这样的选择前,我们看看map的输出结果到底有多大:

shell> cd /data/1/mrlocal/yarn/local/usercache/hdfs/appcache/application_1385983958793_0001/output
shell>du -sh * | grep _r_
7.3G attempt_1385983958793_0001_r_000000_1
6.5G attempt_1385983958793_0001_r_000000_12
5.2G attempt_1385983958793_0001_r_000000_5
5.8G attempt_1385983958793_0001_r_000000_7

这样大的输出放到内存里,显然要OOM了,可以有两种选择,它为什么不选择OnDiskMapOutput呢?

如下这段很显然是关键所在:
if (!canShuffleToMemory(requestedSize)) {
LOG.info(mapId + “: Shuffling to disk since ” + requestedSize +
” is greater than maxSingleShuffleLimit (” +
maxSingleShuffleLimit + “)” );
return new OnDiskMapOutput(mapId, reduceId, this , requestedSize,
jobConf, mapOutputFile , fetcher, true);
}

再看canShuffleToMemory:

private boolean canShuffleToMemory( long requestedSize) {
return (requestedSize < maxSingleShuffleLimit);
}

requestedSize从源码上并不能清楚了解其真实含义,问题最终落在maxSingleShuffleLimit这个参数的含义和来源上,进一步细查可以发现其来源:

this.maxSingleShuffleLimit =
(long)( memoryLimit * singleShuffleMemoryLimitPercent);

两个变量的取值:

// Allow unit tests to fix Runtime memory
this. memoryLimit =
(long)(jobConf.getLong(MRJobConfig. REDUCE_MEMORY_TOTAL_BYTES,
Math. min(Runtime.getRuntime ().maxMemory(), Integer.MAX_VALUE))
* maxInMemCopyUse);

final float singleShuffleMemoryLimitPercent =
jobConf.getFloat(MRJobConfig. SHUFFLE_MEMORY_LIMIT_PERCENT,
DEFAULT_SHUFFLE_MEMORY_LIMIT_PERCENT );

singleShuffleMemoryLimitPercent 取的是mapreduce.reduce.shuffle.memory.limit.percent这个配置的取值,官网给出的解释是:

Expert: Maximum percentage of the in-memory limit that a single shuffle can consume

单个shuffle能够消耗的内存占reduce所有内存的比例,默认值为0.25。Expert”专家模式”,说的很唬人。。

那么降低mapreduce.reduce.shuffle.memory.limit.percent这个参数应该可以使得程序选择OnDiskMapout而不是选择InMemory,调低至0.06在测试,顺利执行,不再报错。

收获:选择了最新的框架,意味着会遇到最新的问题。无助时,了解原理,查询源码,总能找到想要的答案。

遗留:

1.查看源码,很多不清晰的地方都略过了,其中memoryLimit的取值,即reduce所有可使用的内存,实际取值如何确定,需要进一步找寻答案。

2.如何控制mapreduce.reduce.shuffle.memory.limit.percent使得我们能够使用合理的配置来最大化的使用内存,待续。

转载:http://www.sqlparty.com/yarn%E5%9C%A8shuffle%E9%98%B6%E6%AE%B5%E5%86%85%E5%AD%98%E4%B8%8D%E8%B6%B3%E9%97%AE%E9%A2%98error-in-shuffle-in-fetcher/

你可能感兴趣的:(hive)