- Ook密码快速辨认与解密
迷茫&&前行
密码解密Ook密码
一.Ook在线解密网站Ook解密1Ook解密2二.Ook密码辨认Ook密码是一种基于Ook语言的编程语言,由DavidMorgan-Mar设计,灵感来自TerryPratchett的《碟形世界》系列中的猩猩语言。其特点如下:极简语法:仅包含三个基本符号:Ook.、Ook?、Ook!,通过不同组合表达指令。基于Brainfuck:Ook密码与Brainfuck一一对应,每个Ook指令对应一个Brai
- TPAMI 2025 | Glissando-Net: 基于单视图的类别级姿态估计与3D重建
小白学视觉
论文解读IEEETPAMI3d深度学习论文解读顶刊论文IEEETPAMI
论文信息Glissando-Net:DeepSinglevIewCategoryLevelPoseeStimationANd3DReconstructionGlissando-Net:基于单视图的类别级姿态估计与3D重建作者:BoSun;HaoKang;LiGuan;HaoxiangLi;PhilipposMordohai;GangHua论文创新点联合估计3D形状和6D姿态:Glissando-N
- 生成对抗网络优化医疗影像分析方法
智能计算研究中心
其他
内容概要生成对抗网络(GAN)在医疗影像分析中的应用正经历从理论验证到临床落地的关键转型。本研究通过整合联邦学习算法与动态数据增强技术,构建了跨机构医疗影像协同分析框架,在保证患者隐私的前提下实现了数据资源的有效扩展。值得注意的是,算法优化过程中采用的三阶段特征工程策略——包括基于注意力机制的特征选择、多尺度特征融合以及可解释性特征映射——使模型决策透明度提升约37.6%。临床实践表明,将联邦学习
- GAN生成对抗网络小记
文弱_书生
乱七八糟生成对抗网络人工智能神经网络
生成对抗网络(GAN)深入解析:数学原理与优化生成对抗网络(GenerativeAdversarialNetwork,GAN)是一个基于博弈论的深度学习框架,通过生成器(G)和判别器(D)之间的对抗训练,生成高度逼真的数据。其核心思想是让GGG生成伪造数据以欺骗DDD,而DDD则努力分辨真实数据与伪造数据。GAN在理论上可以看作一个极小极大(Minimax)优化问题。1.GAN的数学公式1.1生成
- 使用docker-compose部署时序数据库InfluxDB1.8.4
Heartsuit
Docker云原生容器编排docker时序数据库InfluxDBdocker-compose
背景如今InfluxDB已经更新到了2.x,InfluxDB1.x和2.x版本之间有几个主要的区别:数据模型:1.x:使用数据库和保留策略来组织数据。2.x:引入了组织(organizations)和存储桶(buckets)的概念,存储桶同时包含了数据的时间范围和保留策略。查询语言:1.x:使用InfluxQL,这是一种类似于SQL的查询语言。2.x:引入了Flux,这是一种更强大的数据脚本和查询
- Pytorch实现之利用普通GAN的人脸修复
这张生成的图像能检测吗
优质GAN模型训练自己的数据集GAN系列pytorch生成对抗网络人工智能神经网络深度学习计算机视觉python
简介简介:利用遮挡真实样本的部分面貌,输入给生成器,让生成器输出未被遮挡的面貌,以达到修复人脸的效果。论文题目:FACERESTORATIONVIAGENERATIVEADVERSARIALNETWORKS(基于生成对抗网络的人脸恢复)会议:2023ThirdInternationalConferenceonSecureCyberComputingandCommunication(ICSCCC)摘
- 先进制造aps专题三十一 免费企业高级计划和优化(Advanced Planning and Optimizer)产品FreeAPO简介
lijianhua_9712
aps
FreeAPO是一款免费的企业高级计划和优化(APO,AdvancedPlanningandOptimizer)产品,提供了比SAPAPO更丰富的功能包括以下软件:1.销售需求预测软件免费版(dp)2.车辆路径调度软件免费版(vrp)3.高级生产计划和排程软件免费版(aps)4.供应链网络规划设计软件开源免费版(snp)5.生产排产仿真/工厂制造仿真软件开源免费版(sim)6.约束优化求解器软件开
- Chebykan wx 文章阅读
やっはろ
深度学习
文献筛选[1]神经网络:全面基础[2]通过sigmoid函数的超层叠近似[3]多层前馈网络是通用近似器[5]注意力是你所需要的[6]深度残差学习用于图像识别[7]视觉化神经网络的损失景观[8]牙齿模具点云补全通过数据增强和混合RL-GAN[9]强化学习:一项调查[10]使用PySR和SymbolicRegression.jl的科学可解释机器学习[11]Z.Liu,Y.Wang,S.Vaidya,F
- Adobe Firefly 技术浅析(二):Transformer生成模型
爱研究的小牛
AIGC——图像transformer深度学习人工智能AIGC机器学习
AdobeFirefly的图像生成技术不仅依赖于生成式对抗网络(GAN),还引入了基于Transformer的生成模型。Transformer模型在处理长距离依赖关系和生成复杂图像结构方面具有显著优势。1.基本原理1.1Transformer模型简介Transformer模型最初由Vaswani等人在2017年提出,用于自然语言处理(NLP)任务。其核心是自注意力机制(Self-Attention
- 开源项目 Hoarder 使用教程
房迁伟
开源项目Hoarder使用教程hoarderAself-hostablebookmark-everythingapp(links,notesandimages)withAI-basedautomatictaggingandfulltextsearch项目地址:https://gitcode.com/gh_mirrors/ho/hoarder1.项目的目录结构及介绍hoarder/├──docs/│
- 重构:封装记录
Allenonlywork
重构
曾用名:以数据类取代记录(ReplaceRecordwithDataClass)//重构前organization={name:"AcmeGooseberries",country:"GB"};//重构后classOrganization{constructor(data){this.name=data.name;this._country=data.country;}getname(){retu
- 【Steg】CTF 隐写术题目解题思路图
D-river
CTF安全网络安全
以下是专门针对CTF隐写术(Steganography)的解题思路与步骤树形图,包含常见分类、工具链和关键方法:CTF隐写术题目解题思路图隐写术(Steganography)├──1.图片隐写(ImageSteg)│├──1.1LSB隐写(最低有效位)││├──步骤:StegSolve逐通道分析,提取LSB数据。││└──工具:StegSolve、zsteg、PythonPIL库。│││├──1.
- 论文阅读-秦汉时期北方边疆组织的空间互动模式与直道的定位(中国)
MilkLeong
论文阅读空间计算
论文英文题目:AspatialinteractionmodelofQin-HanDynastyorganisationonthenorthernfrontierandthelocationoftheZhidaohighway(China)发表于:journalofarchaeologicalscience,影响因子:3.030论文主要是使用空间互动模型来对秦汉时期的北方边疆直道进行定位和重建。分析
- Flutter Image.network()加载图片报403错误
qianxiamuxin
Flutterflutterandroidwebviewwebappandroidstudioiosgradle
Flutter报错403原因========Exceptioncaughtbyimageresourceservice================================================ThefollowingNetworkImageLoadExceptionwasthrownresolvinganimagecodec:HTTPrequestfailed,statusC
- 【氮化镓】用于低压射频电源的具有80.4% PAE的Si基E-Mode AlN/GaN HEMT
北行黄金橘
氮化镓器件可靠性GaN科技氮化镓GaN HEMTPAE
引言本文是一篇关于增强型(E-mode)AlN/GaN高电子迁移率晶体管(HEMTs)的研究论文,晶体管是在硅衬底上制造的,并在3.6GHz频率下展示了80.4%的峰值功率附加效率(PAE)。文章首先介绍了GaN器件在微波和毫米波功率放大器中的应用,特别是在雷达、卫星通信和民用移动通信系统中。这些应用对器件的性能要求极高,包括高功率密度、高效率和低供电电压。文章指出,与耗尽模式(D-mode)相比
- 【氮化镓】基于SiC脉冲I-V系统研究Schottky型p-GaN HEMT正栅极ESD机制
北行黄金橘
氮化镓器件可靠性人工智能氮化镓GaNHEMTESD脉冲测试
这篇文章题为《InvestigatingForwardGateESDMechanismofSchottky-Typep-GaNGateHEMTsUsingaSiC-BasedHigh-SpeedPulsedI-VTestSystem》,发表于《IEEEElectronDeviceLetters》2024年7月刊。研究重点是探讨肖特基型p-GaN门极高电子迁移率晶体管(HEMTs)在正向门极人体模型
- 【氮化镓】GaN HEMTs 在金星及恶劣环境下的应用
北行黄金橘
氮化镓器件可靠性生成对抗网络人工智能神经网络
文章是关于GaN增强模式晶体管(enhancement-modep-GaN-gateAlGaN/GaNHEMTs)在金星探索和其它恶劣环境下的应用研究。文章由QingyunXie等人撰写,发表在《AppliedPhysicsLetters》上,属于(Ultra)Wide-bandgapSemiconductorsforExtremeEnvironmentElectronics特刊。标题与作者标题:
- 【氮化镓】p-GaN HEMTs空穴陷阱低温冻结效应
北行黄金橘
氮化镓器件可靠性科技科学研究学习多尺度模拟
这篇文章是关于低温条件下p-GaN高电子迁移率晶体管(HEMTs)栅极漏电的研究。文章通过电容深能级瞬态谱(C-DLTS)测试和理论模型分析,探讨了空穴陷阱对栅极漏电电流的影响。以下是对文章的总结:摘要(Abstract)文章摘要指出,在低温条件下,p-GaNHEMTs表现出一种冻结陷阱效应,导致空穴载流子被捕获在长寿命状态中,从而影响载流子传输。通过C-DLTS测试和基于理论模型的分析,发现在低
- 【氮化镓】GaN HEMTs结温和热阻测试方法
北行黄金橘
氮化镓器件可靠性学习科学研究科技多尺度模拟
文章《TemperaturerisedetectioninGaNhigh-electron-mobilitytransistorsviagate-drainSchottkyjunctionforward-conductionvoltages》,由XiujuanHuang,ChunshengGuo,QianWen,ShiweiFeng,和YaminZhang撰写,发表在《Microelectroni
- 【氮化镓】AlGaN/GaN HEMTs沟道温度测量
北行黄金橘
氮化镓器件可靠性生成对抗网络人工智能神经网络多尺度模拟科学研究科技学习
文章是关于AlGaN/GaNHEMTs(高电子迁移率晶体管)在不同基底(如蓝宝石和硅)上生长时,通过直流(DC)特性方法确定沟道温度的研究。文章由J.Kuzmík,P.Javorka,A.Alam,M.Marso,M.Heuken,和P.Kordoˇs共同撰写,发表在2002年8月的《IEEETransactionsonElectronDevices》上,卷号为49,第8期。摘要(Abstract
- GaussianEditor: Swift and Controllable 3D Editing with Gaussian Splatting
于初见月
paper计算机视觉
Abstract3Deditingplaysacrucialroleinmanyareassuchasgamingandvirtualreality.Traditional3Deditingmethods,whichrelyonrepresentationslikemeshesandpointclouds,oftenfallshortinrealisticallydepictingcomplexs
- 大话机器学习三大门派:监督、无监督与强化学习
安意诚Matrix
机器学习笔记机器学习人工智能
以武侠江湖为隐喻,系统阐述了机器学习的三大范式:监督学习(少林派)凭借标注数据精准建模,擅长图像分类等预测任务;无监督学习(逍遥派)通过数据自组织发现隐藏规律,在生成对抗网络(GAN)等场景大放异彩;强化学习(明教)依托动态环境交互优化策略,驱动AlphaGo、自动驾驶等突破性应用。文章融合技术深度与江湖趣味,既解析了CNN、PCA、Q-learning等核心算法的"武功心法"(数学公式与代码实现
- Vision Transformer 分类水果图片集 Python 代码(可训练自己数据集)
Illusionna.
transformer深度学习人工智能
代码链接:https://github.com/Illusionna/ComputerVision/tree/main/EfficientTransformerArepositoryforViT.ContributetoIllusionna/TransformerdevelopmentbycreatinganaccountonGitHub.https://github.com/Illusionna
- 基于 oneM2M 标准的空气质量监测系统的互操作性
神一样的老师
论文阅读分享物联网物联网
论文标题英文标题:InteroperabilityofAirQualityMonitoringSystemsthroughtheoneM2MStandard中文标题:基于oneM2M标准的空气质量监测系统的互操作性作者信息JonnarDanielleDiosana,GabrielAngeloLimlingan,DanielleBryanSore,MarcRosales,IsabelAustria,
- WHALE: TOWARDS GENERALIZABLE AND SCALABLE WORLD Models for Embodied Decision-making 翻译
Doc2X
经典论文翻译人工智能
Doc2X|PDF到Markdown一步搞定只需几秒,Doc2X即可将PDF转换为Markdown,支持批量处理和深度翻译功能。Doc2X|One-StepPDFtoMarkdownConversionInjustseconds,Doc2XconvertsPDFstoMarkdown,withsupportforbatchprocessingandadvancedtranslationfeatur
- 【人工智能基础】生成模型:让数据“无中生有”的神奇魔法
roman_日积跬步-终至千里
#人工智能基础知识人工智能
文章目录一、生成模型的发展脉络二、生成模型的基本原理三、主要生成模型及其逻辑1、生成对抗网络(GAN)2、变分自编码器(VAE)3、扩散模型(DPM)4、基于能量的模型(EBM)5、正规化流(NF)四、生成模型对比分析五、生成模型的应用拓展一、生成模型的发展脉络在深度学习尚未兴起的时期,计算机视觉领域的传统图像生成算法主要依赖纹理合成和纹理映射等技术。这些算法基于手工设计的特征进行图像构建,然而,
- AIGC技术研究与应用 ---- 下一代人工智能:新范式!新生产力!(2.1-大模型发展历程 之 背景与开端)
shiter
AI重制版】人工智能系统解决方案与技术架构人工智能AIGC深度学习
文章大纲按照目标不同,AI大模型可分为四类,多模态为未来方向NLP大模型CV大模型科学计算大模型多模态大模型2022年是大模型技术的拐点,前期技术铺垫奠定了基础生成式模型的开端VAE与GANVAEGAN参考文献与学习路径GPT系列模型解析前序文章模型进化券商研报陆奇演讲按照目标不同,AI大模型可分为四类,多模态为未来方向NLP大模型自然语言处理(NaturalLanguageProcessing,
- 推荐一些免费开源支持Vue3甘特图组件
Microi风闲
【辅助工具】开发伴侣开源甘特图
文章目录前言一、dhtmlxGantt二、frappe-gantt三、vue-ganttastic四、gantt-elastic五、v-gantt六、vue-gantt-schedule-timeline-calendar七、vue-gantt八、总结前言在现代项目管理和任务调度中,甘特图是一种非常实用的工具。它能够直观地展示任务的时间安排、进度和依赖关系。对于使用Vue3的开发者来说,选择一个合
- Imagen原理与代码实例讲解
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Imagen原理与代码实例讲解1.背景介绍在人工智能领域中,图像生成一直是一个具有挑战性的任务。传统的计算机视觉模型通常专注于理解和分析现有图像,而生成全新的高质量图像则需要更高级的技术。随着深度学习技术的不断发展,生成式对抗网络(GenerativeAdversarialNetworks,GAN)等新型模型逐渐展现出了令人惊叹的图像生成能力。谷歌的Imagen就是一种基于大型视觉语言模型的全新图
- 如何分配给mysql资源_如何给mysql用户分配权限
G行为
如何分配给mysql资源
1,Mysql下创建新的用户语法:1.createuser用户名identifiedby'密码';例:createuserxiaogangidentifiedby'123456';新创建的用户,默认情况下是没有任何权限的。2.如何给用户分配权限语法:1.grant权限on数据库.数据表to'用户'@'主机名';例:给xiaogang分配所有的权限grantallon*.*to'xiaogang'@
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号