- 2.1概率统计的世界
极客探索者
量化交易概率论
欢迎来到概率统计的世界!在量化交易中,概率统计是至关重要的工具。通过理解概率,我们可以用数学的方法来描述市场行为,预测未来走势,并制定交易策略。让我们一起从基础概念开始,逐步深入,揭开概率统计的神秘面纱。1.1概率论的基本概念与应用概率是用来描述某个事件发生可能性的数值。例如,丢一枚硬币,正面朝上的概率是50%。这个概率可以用数学公式表示为:在量化交易中,我们常常需要计算各种事件的概率,例如股票价
- 深度学习应该如何入门?
wypdao
人工智能深度学习人工智能
深度学习是一门令人着迷的领域,但初学者可能会感到有些困惑。让我们从头开始,用通俗易懂的语言来探讨深度学习的基础知识。1.基础知识深度学习需要一些数学和编程基础。首先,我们要掌握一些数学知识,如线性代数、微积分和概率统计。这些知识在深度学习算法中非常常见。另外,选择一门编程语言作为工具,如Python,掌握其基本语法和常用库的使用。2.学习机器学习吴恩达的机器学习课程是一个很好的入门教程。虽然有些地
- 如何学习和规划类似ChatGPT这种人工智能(AI)相关技术
ABEL in China
学习chatgpt人工智能
学习和规划类似ChatGPT这种人工智能(AI)相关技术的路径通常包括以下步骤:学习基础知识:学习编程:首先,你需要学习一种编程语言,例如Python,这是大多数人工智能项目的首选语言。数学基础:深度学习和自然语言处理等领域需要一定的数学基础,包括线性代数、微积分和概率统计。掌握机器学习和深度学习:了解机器学习和深度学习的基本概念,例如神经网络、卷积神经网络(CNN)和递归神经网络(RNN)。学习
- 均方根(rms),标准差(std),平均绝对误差(mae),方差(var/std*std)计算与数学意义
拾穗哥
matlab算法经验分享
在计算时总是遇到需要计算平均值,但是对于均方根和标准差选择还是不明确。标题里面的括号为matlab函数可以直接运行。1、均方根(rms)均方根误差用于衡量观测值同真值之间的偏差。2、标准差(std)标准差是方差的算术平方根。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。3、平均绝对误差(mae)平均绝对误差是所有单个观测值与算术平均值的偏
- 发家致富的秘密(83)
c0e1a742c261
1)、父母做什么,我们便跟着做什么。能超越父母的子女并不多。父母读大学,孩子便能读大学。父母是大学教授,孩子再差也是大学老师。生活是概率统计,漏网之鱼不过是传奇,是奇迹。我们35岁做什么,我们的孩子到了35岁便做什么。锁定一个卖点循环。锁定了,便不要变。不要以为人生很长。从大学出来,我们不是22便是23。25岁成家了,所有的想法都没了。挣扎到35岁,便是人生的顶点。现在,我们在做什么?我们的卖点,
- 8、python多项式贝叶斯文本分类(完整)
UP Lee
数据挖掘实战多项式贝叶斯文章分类
1、贝叶斯定理(BayesTheorem)朴素贝叶斯分类(NaiveBayesClassifier)贝叶斯分类算法,是统计学的一种分类方法,它是利用贝叶斯定理的概率统计知识,对离散型的数据进行分类的算法2、贝叶斯算法的类型sklearn包naive_bayes模块GaussianNB高斯贝叶斯BernoulliNB伯努利贝叶斯MultionmialNB多项式贝叶斯(需要知道具体每个特征的数值大小)
- 这才是心理学
JeetChan
这才是心理学 如果让我荐书,一定是这本,《这才是心理学》。曾极力向身边的人推荐学习概率统计方面的知识,尽管人们都“嗤之以鼻”,而我认为世界是被概率统治的,最终被揭示的行为规律通常都是一种概率关系。这本书向我们阐述了心理学的批判性思维(原作名:HowtoThinkStraightaboutPsychology)和概率性思维。书中有大量反常识的观点,颠覆你的认知。同时,这也是一本难书,书中包含了大量
- LogLogCounting 基数估计算法
芒果菠萝蛋炒饭
介绍基数估计算法(CardinalityEstimationAlgorithm)是基于概率统计理论的估算给定数据集中不重复元素基数的算法。它是一种基于概率统计理论所设计的概率算法,克服了精确基数计数算法的诸多弊端(如内存需求过大或难以合并等),同时可以通过一定手段将误差控制在所要求的范围内。什么是基数?基数指的是一个集合(这里的集合可以包含重复元素,不是集合论中定义的集合)中不同元素的个数,例如集
- 基于第一性原理投资
曹博士
图片发自App张教授打造丹华资本,致力于用第一性原理来指导风险投资。所谓第一性原理,就是基于最基本的自然法则,而且通常是可以用数学来表达并且在物理上首先验证。比如熵法则,量子原理,概率统计框架,等。不过从实际效果来看,2013起步的丹华资本,业绩很差。基本上成了反面案例。这个类似由诺贝尔经济学获奖者组建的量化投资公司长期资本,本来希望用量化的方式做套利投资,结果一个俄罗斯的黑天鹅事件,就让其折戟沉
- 概率统计学习打卡——数理统计与描述性分析
xtsqmx
1.数理统计的基本概念总体:研究对象的全体(X)个体:组成总体的每个基本单元样本:从总体中抽取的一部分个体()简单随机样本:具有随机性和独立性的样本,即样本相互独立具有同一分布样本的两重性:抽样前是随机变量,抽样后是具体的数统计量:样本的函数,不含有任何未知参数抽样分布:统计量的分布2.常用的统计量样本均值:用来估计总体均值和对对有关总体均值的假设做检验样本方差:用来估计总体方差和对有关总体方差的
- DataWhale概率统计4——方差分析
摩卡Daddy
6.方差分析6.1概要方差分析(Analysisofvariance,ANOVA)主要研究分类变量作为自变量时,对因变量的影响是否显著,用于两个及两个以上样本均属差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分为两类,一是不可控的随机因素,另一是研究中施加对结果形成影响的可控因素6.2原理方差分析(ANOVA)又称“变异数分析”或“F检验”,是由罗纳德·费雪爵士发
- 《自动驾驶汽车的缺陷及其产品责任》(四)
刘东利2020
接下来是自动驾驶的主体资格讨论,从技术及法律上。首先看技术的理解:从自动驾驶人工智能所赖以实现的技术来看,所谓具有深度自主学习能力的人工智能其本质上是依靠大数据、概率统计以及日益增长的运算能力实现对驾驶行为及其规律的重复性归纳,但并不能完全揭示其本质或内在规律,尤其是其缺乏人类的创造性思维,无法在既有信息和数据的基础上创造性地解决未知问题、无法创造新知识。所以,第一方面的题眼是“重复性归纳”,不具
- 人工智能之大数定理和中心极限定理
WEL测试
人工智能WEL测试人工智能概率论大数定理中心极限定理
大数定律大数定律:是一种描述当试验次数很大时所呈现的概率性致的定律,由概率统计定义“频率收敛于概率”引申而来。换而言之,就是n个独立分布的随机变量其观察值的均值依概率收敛于这些随机变量所属分布的理论均值,也就是总体均值。例如:假设每次从1、2、3当中随机选取一个数字,随着抽样次数的增加,样本均值越来越趋近于总体期望((1+2+3)/3=2)。依概率收敛:设{XnX_nXn}为一随机变量序列,X为一
- DAY 25 《你能准确的预测股价嘛》
Ciel天
你不能准确的预估5分钟内股票价格的涨幅,就像你不能够预估,抛硬币时会是哪一面朝上一样,因为这两件事情都和赌博买彩票一样,是“独立事件”。换句话说,预测的准确率永远无法超过50%,这在概率统计学上没有意义。当一件事情发生的概率在50%以上,哪怕是51%,我们就要努力,甚至要赌,因为哪怕是这一次输了,从长期看,你一定会赢。“绝大多数人没有从觉悟上理解统计概率基础知识有多么重要,于是,这一辈子就好像别人
- 机器学习 强化学习 深度学习的区别与联系
坠金
机器学习机器学习人工智能深度学习
机器学习强化学习深度学习机器学习按道理来说,这个领域(机器学习)应该叫做统计学习(StatisticalLearning),因为它的方法都是由概率统计领域拿来的。这些人中的领军人物很有商业头脑,把统计和物理的数理模型,改名叫做机器,比如**模型(model)就叫**机(machine),把一些层次模型(hierarchicalmodel)说成是“网”(net)。这样,搞出了几个“机”和“网”之后,
- 深度学习如何入门?
清水白石008
深度学习自然语言处理人工智能
深度学习如何入门?深度学习是一种利用多层神经网络来学习数据特征和模式的机器学习方法,它在图像识别、自然语言处理、语音识别、推荐系统等领域都取得了令人瞩目的成果。那么,如果你想学习深度学习,你需要掌握哪些知识和技能呢?本文将为你提供一个简明的指南,帮助你快速入门深度学习。一、基础知识深度学习涉及到许多数学概念,如线性代数、微积分和概率统计。如果你对这些概念不熟悉,可以通过在线课程、教科书和教程来学习
- 读过的书单
竭尽全力才能成功
读万卷书行万里路2017-今天读过的书单写出来给大家参考下工欲善其事,必先利其器我是一个php程序员鸟哥的linux私房菜基础篇服务器架构篇日本结城浩著程序员的数学1程序员的数学2概率统计程序员的数学3线性代数蒋心数据库系统概论清华大学出版社Mysql从入门到精通国家863软件孵化器headfirst设计模式大话设计模式人月神话HTTP权威指南人民邮电出版社redis入门指南李子烨人民邮电出版社锋
- 贝叶斯估计:Cramér-Rao下界和Fisher信息
DoYoungExplorer
导航算法及滤波算法概率论人工智能机器学习
在概率统计和信息理论领域,Cramér-Rao下界(Cramér-RaoBound)和Fisher信息(FisherInformation)是两个重要而密切相关的概念。它们在估计理论和信息量度量中发挥着关键作用。本文将深入探讨这两个概念的定义、关系以及它们在统计推断中的应用。Cramér-Rao下界的表达:Cramér-Rao下界(Cramér-Raobound)是统计估计理论中的一个重要概念,它
- 多元高斯分布:条件分布推导
DoYoungExplorer
导航算法及滤波机器学习人工智能算法
在概率统计学中,多元高斯分布是一种非常重要的分布,其条件分布的推导在实际问题中有广泛的应用。本文将详细探讨给定部分变量条件下,多元高斯分布中另一部分变量的条件分布的推导过程。1.多元高斯分布回顾首先,我们回顾一下多元高斯分布的基本形式:其中,Xa和Xb是随机向量的两个部分,μ是均值向量,Σ是协方差矩阵。均值向量:协方差矩阵:此外,使用协方差矩阵的逆矩阵也比较方便,即精度矩阵从而引入精度矩阵2.条件
- 机器学习周刊第五期:一个离谱的数据可视化Python库、可交互式动画学概率统计、机器学习最全文档、快速部署机器学习应用的开源项目、Redis 之父的最新文章
机器学习算法与Python实战
机器学习算法与Python实战机器学习信息可视化python
date:2024/01/08这个网站用可视化的方式讲解概率和统计基础知识,很多内容还是可交互的,非常生动形象。大家好,欢迎收看第五期机器学习周刊本期介绍7个内容,涉及Python、概率统计、机器学习、大模型等,目录如下:一个离谱的Python库看见概率,看见统计2024机器学习最强文档Gradio顶级程序员如何使用LLMTinyLlama微软宣布利用大型语言模型改进文本嵌入1、一个离谱的Pyth
- 线性代数——(期末突击)概率统计习题(概率的性质、全概率公式)
qiyi.sky
线性代数概率论学习笔记
目录概率的性质题一全概率公式题二题三概率的性质有限可加性:若有限个事件互不相容,则单调性:互补性:加法公式:可分性:题一在某城市中共发行三种报纸:甲、乙、丙。在这个城市的居民中,订甲报的有45%,订乙报的有35%,订丙报的有30%,同时订甲、乙两报的有10%,同时订甲、丙两报的有8%,同时订乙、丙两报的有5%,同时订三种报纸的有3%,求下述百分比:(1)只订甲报的;(2)只订甲、乙两报的;(3)只
- 理论U2 贝叶斯决策理论
轩不丢
机器学习机器学习
文章目录一、概率统计理论基础1、乘法公式2、全概率公式3、贝叶斯公式二、贝叶斯决策理论1、用处2、解决问题3、决策基础4、一些概念5、核心公式三、最小错误率贝叶斯决策1、目标2、例题分析3、问题1)决策的风险四、最小风险贝叶斯决策1、背景2、基本概念1)损失函数2)条件期望损失:3)期望风险:3、目标4、决策5、算法步骤6、例题分析五、两种贝叶斯的关系六、朴素贝叶斯决策1、问题2、概念3、例题分析
- 数据结构与算法之美学习笔记:46 | 概率统计:如何利用朴素贝叶斯算法过滤垃圾短信?
浊酒南街
数据结构与算法之美学习笔记算法数据结构
目录前言算法解析总结引申前言本节课程思维导图:上一节我们讲到,如何用位图、布隆过滤器,来过滤重复的数据。今天,我们再讲一个跟过滤相关的问题,如何过滤垃圾短信?垃圾短信和骚扰电话,我想每个人都收到过吧?买房、贷款、投资理财、开发票,各种垃圾短信和骚扰电话,不胜其扰。如果你是一名手机应用开发工程师,让你实现一个简单的垃圾短信过滤功能以及骚扰电话拦截功能,该用什么样的数据结构和算法实现呢?算法解析实际上
- 算法有哪⼏类?
颓特别我废
C语言算法c语言
一、问题按照执⾏功能的不同,可以将算法分为不同的类别,那么算法有哪⼏类?二、解答计算机上的算法按照实现功能可以分为两⼤类:即数值型算法和⾮数值算法。1、数值型算法(NumericalAlgorithms)这类算法主要用于处理数值数据和解决数学问题,它们通常涉及到大量的数学计算,包括但不限于矩阵运算、微积分、线性代数、概率统计、优化问题等。例如,求解方程组的高斯消元法、数值积分方法如辛普森法则、牛顿
- 笔记 | gamma分布
懒麻蛇
机器学习matlabpython人工智能统计学
gamma分布简介大写:Γ小写:γGamma函数在概率统计中频繁现身,众多的统计分布,包括常见的统计学三大分布(t分布,χ2分布,F分布)、Beta分布、Dirichlet分布的密度公式中都有Gamma函数的身影;当然发生最直接联系的概率分布是直接由Gamma函数变换得到的Gamma分布。α称为shapeparameter,主要决定了分布曲线的形状;β称为rateparameter,主要决定曲线有
- 11种概率分布,你了解几个?
小白学视觉
人工智能python编程语言机器学习深度学习
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达本文转自:视学算法了解常见的概率分布十分必要,它是概率统计的基石。这是昨天推送的从概率统计到深度学习,四大技术路线图谱,都在这里!文章中的第一大技术路线图谱如下所示,图中左侧正是本文要总结的所有常见概率分布。1均匀分布1)离散随机变量的均匀分布:假设X有k个取值:x1,x2,...,xk则均匀分布的概率密度函数为:2)连续随机变
- 《财富自由之路》39-40章
Yixing_seven
1、为什么没有人能准确预测市场价格的短期走向?问题的质量决定答案的质量先定义什么是“准确”,究竟要做到什么程度才算是准确关于二元问题,一般的答案只有“不一定”,或者“不知道”关于“预测”还缺个限定,时间维度不明,是短期预测?还是长期预测?关键结论短期价格预测几乎无法做到对于长期价格的预测,却比较容易,因为“基本面”就放在那里HOW:避免短期思考,一个月记录一次价格,并形成习惯学好并应用概率统计知识
- 揭秘大模型「幻觉」:数据偏差、泛化与上下文理解的挑战与解决之道
数据与后端架构提升之路
大模型深度学习机器学习人工智能
什么是大模型「幻觉」所谓的「幻觉」指的是当大模型生成与现实不符或逻辑上不连贯的信息时。这通常发生在模型对某些数据理解不足或数据本身存在偏差的情况下。由于模型是基于概率统计和以往数据训练的,它们可能在面对未知或少见情况时产生不准确的推断。大模型不具有本地知识所以存在幻觉造成大模型「幻觉」的原因这种现象的产生有多个原因:数据偏差:如果训练数据中存在偏差,模型可能会学习并复制这些偏差。过度泛化:模型可能
- AI技术体系和领域浅总结
TisUs
数学基础微积分《高等数学》线性代数《线性代数》概率统计《概率论与数理统计》信息论《信息论基础》(机械工业出版社)集合论和图论《离散数学》博弈论《博弈论》(中国人民大学出版社)张量分析现代几何计算机基础计算机原理程序设计语言操作系统分布式系统算法基础机器学习算法机器学习基础(估计方法特征工程)线性模型(线性回归)逻辑回归决策树模型(GBDT)支持向量机贝叶斯分类器神经网络(深度学习):MLPCNNR
- 计算机图形学方向的基本能力
每天要吃一桶饭
CG图形学图形学
(1)数学基础:线性代数、概率统计学。在深度学习原理以及图形学的基础的原理,很加分。基本的算法研发能力。(2)综合性的技能:CV、DeepLearning、Interaction(人与自然交互、视觉交互)(3)学习多方面技能,实际应用落地。软硬结合、算法与应用结合。(4)工程化实现!用实际场景来验证算法的可行性,从哪些方面进行优化。(5)兴趣、热情,解决问题!学习的深度。(6)追求系统更加可用、好
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =