我们以NS方程(Navier-Stokes Equation)为例,来推导控制方程的柱坐标表示。我这里考虑不可压的,密度和粘性系数都为常数的情况。
此时,直角坐标系下的NS方程的表达形式为,
ρ D V ⃗ D t = − ∇ p + ρ g ⃗ + μ ∇ 2 V ⃗ ∇ ⋅ V ⃗ = 0 \begin{array}{c}{\rho \frac{D \vec{V}}{D t}=-\nabla p+\rho \vec{g}+\mu \nabla^{2} \vec{V}} \\ {\nabla \cdot \vec{V}=0}\end{array} ρDtDV=−∇p+ρg+μ∇2V∇⋅V=0
按分量的形式可以写为:
ρ ( ∂ u ∂ t + u ∂ u ∂ x + v ∂ u ∂ y + w ∂ u ∂ z ) = − ∂ P ∂ x + ρ g x + μ ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 ) \rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right)=-\frac{\partial P}{\partial x}+\rho g_{x}+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right) ρ(∂t∂u+u∂x∂u+v∂y∂u+w∂z∂u)=−∂x∂P+ρgx+μ(∂x2∂2u+∂y2∂2u+∂z2∂2u)
ρ ( ∂ v ∂ t + u ∂ v ∂ x + v ∂ v ∂ y + w ∂ v ∂ z ) = − ∂ P ∂ y + ρ g y + μ ( ∂ 2 v ∂ x 2 + ∂ 2 v ∂ y 2 + ∂ 2 v ∂ z 2 ) \rho\left(\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right)=-\frac{\partial P}{\partial y}+\rho g_{y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right) ρ(∂t∂v+u∂x∂v+v∂y∂v+w∂z∂v)=−∂y∂P+ρgy+μ(∂x2∂2v+∂y2∂2v+∂z2∂2v)
ρ ( ∂ w ∂ t + u ∂ w ∂ x + v ∂ w ∂ y + w ∂ w ∂ z ) = − ∂ P ∂ z + ρ g z + μ ( ∂ 2 w ∂ x 2 + ∂ 2 w ∂ y 2 + ∂ 2 w ∂ z 2 ) \rho\left(\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right)=-\frac{\partial P}{\partial z}+\rho g_{z}+\mu\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right) ρ(∂t∂w+u∂x∂w+v∂y∂w+w∂z∂w)=−∂z∂P+ρgz+μ(∂x2∂2w+∂y2∂2w+∂z2∂2w)
如图所示,我们建立直角坐标系和柱坐标系。
由柱坐标系的定义,我们知道,直角坐标系和柱坐标系满足这样一个关系:
[ r θ z ] = [ x 2 + y 2 arctan ( y / x ) z ] , 0 ≤ θ < 2 π \left[ \begin{array}{l}{r} \\ {\theta} \\ {z}\end{array}\right]=\left[ \begin{array}{c}{\sqrt{x^{2}+y^{2}}} \\ {\arctan (y / x)} \\ {z}\end{array}\right], \quad 0 \leq \theta<2 \pi ⎣⎡rθz⎦⎤=⎣⎡x2+y2arctan(y/x)z⎦⎤,0≤θ<2π
[ x y z ] = [ r cos θ r sin θ z ] \left[ \begin{array}{l}{x} \\ {y} \\ {z}\end{array}\right]=\left[ \begin{array}{c}{r \cos \theta} \\ {r \sin \theta} \\ {z}\end{array}\right] ⎣⎡xyz⎦⎤=⎣⎡rcosθrsinθz⎦⎤
假设在直角坐标系中,三个坐标轴方向的单位向量分别表示为 i 、 j 、 k \mathbf{i、j、k} i、j、k,在柱坐标系中,三个轴向的单位向量表示为 e r , e θ , e z \mathbf{e_r,e_\theta,e_z} er,eθ,ez,那么,如图所示,我们将 i 、 j 、 k \mathbf{i、j、k} i、j、k分解到柱坐标系中,将 e r , e θ , e z \mathbf{e_r,e_\theta,e_z} er,eθ,ez分解到直角坐标系中,可以得到二者之间的一个关系。
[ e r e θ e z ] = [ cos θ sin θ 0 − sin θ cos θ 0 0 0 1 ] [ i j k ] \left[ \begin{array}{c}{\mathbf{e_r}} \\ {\mathbf{e_\theta}} \\ {\mathbf{e_z}}\end{array}\right]=\left[ \begin{array}{ccc}{\cos \theta} & {\operatorname{sin} \theta} & {0} \\ {-\sin \theta} & {\cos \theta} & {0} \\ {0} & {0} & {1}\end{array}\right] \left[ \begin{array}{l}{\mathbf{i}} \\ {\mathbf{j}} \\ {\mathbf{k}}\end{array}\right] ⎣⎡ereθez⎦⎤=⎣⎡cosθ−sinθ0sinθcosθ0001⎦⎤⎣⎡ijk⎦⎤
[ i j k ] = [ cos θ -sin θ 0 sin θ cos θ 0 0 0 1 ] [ e r e θ e z ] \left[ \begin{array}{l}{\mathbf{i}} \\ {\mathbf{j}} \\ {\mathbf{k}}\end{array}\right]=\left[ \begin{array}{ccc}{\cos \theta} & {\operatorname{-sin} \theta} & {0} \\ {\sin \theta} & {\cos \theta} & {0} \\ {0} & {0} & {1}\end{array}\right] \left[ \begin{array}{c}{\mathbf{e_r}} \\ {\mathbf{e_\theta}} \\ {\mathbf{e_z}}\end{array}\right] ⎣⎡ijk⎦⎤=⎣⎡cosθsinθ0-sinθcosθ0001⎦⎤⎣⎡ereθez⎦⎤
坐标系变换的雅克比矩阵体现了两个坐标系中变量的偏导关系,表示如下:
为了推导不可压NS方程在柱坐标下的表示形式,我们先推导一些常用算子的柱坐标表示(重要但后面不一定全会用到),即:
∇ f = ∂ f ∂ r e r + 1 r ∂ f ∂ θ e θ + ∂ f ∂ z e z ∇ ⋅ f = 1 r ∂ ∂ r ( r f r ) + 1 r ∂ f θ ∂ θ + ∂ f z ∂ z ∇ × f = ( 1 r ∂ f z ∂ θ − ∂ f θ ∂ z ) e r + ( ∂ f r ∂ z − ∂ f z ∂ r ) e θ + 1 r ( ∂ ∂ r ( r f θ ) − ∂ f r ∂ θ ) e z ∇ 2 f = 1 r ∂ ∂ r ( r ∂ f ∂ r ) + 1 r 2 ∂ 2 f ∂ θ 2 + ∂ 2 f ∂ z 2 \begin{aligned} \nabla f &=\frac{\partial f}{\partial r} \mathbf{e_r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \mathbf{e_\theta}+\frac{\partial f}{\partial z} \mathbf{e_z}\\ \nabla \cdot \boldsymbol{f} &=\frac{1}{r} \frac{\partial}{\partial r}\left(r f_{r}\right)+\frac{1}{r} \frac{\partial f_{\theta}}{\partial \theta}+\frac{\partial f_{z}}{\partial z} \\ \nabla \times \boldsymbol{f} &=\left(\frac{1}{r} \frac{\partial f_{z}}{\partial \theta}-\frac{\partial f_{\theta}}{\partial z}\right) \mathbf{e_r}+\left(\frac{\partial f_{r}}{\partial z}-\frac{\partial f_{z}}{\partial r}\right) \mathbf{e_\theta}+\frac{1}{r}\left(\frac{\partial}{\partial r}\left(r f_{\theta}\right)-\frac{\partial f_{r}}{\partial \theta}\right) \mathbf{e_z}\\ \nabla^{2} f &=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \end{aligned} ∇f∇⋅f∇×f∇2f=∂r∂fer+r1∂θ∂feθ+∂z∂fez=r1∂r∂(rfr)+r1∂θ∂fθ+∂z∂fz=(r1∂θ∂fz−∂z∂fθ)er+(∂z∂fr−∂r∂fz)eθ+r1(∂r∂(rfθ)−∂θ∂fr)ez=r1∂r∂(r∂r∂f)+r21∂θ2∂2f+∂z2∂2f
**重要PS:**注意到,这里散度和旋度的定义用到的是的 f f f在柱坐标系下的分量来表示,而一阶和二阶梯度中的 f f f是一个函数,这个函数既可以在直角坐标系下,也可以在柱坐标系下。
因为Tex公式敲起来挺费事的,我这里只证明一下第一个,其他类似。使用坐标系单位向量之间的关系和链式法则。
∇ f = f x + f y + f z = [ ( f r c o s θ − f θ 1 r s i n θ ) c o s θ + ( f r s i n θ + f θ 1 r c o s θ ) s i n θ ] e r + [ ( f r 1 r c o s θ − f θ 1 r s i n θ ) − s i n θ + ( f r s i n θ + f θ 1 r c o s θ ) c o s θ ] e θ + f z e z = f r e r + 1 r f θ e θ + f z e z \nabla f = f_x+f_y+f_z=[(f_r\mathrm{cos \theta-f_\theta\frac{1}{r}\mathrm{sin\theta}})\mathrm{cos \theta}+(f_r\mathrm{sin\theta+f_\theta\frac{1}{r}\mathrm{cos\theta}})\mathrm{sin\theta}]\mathbf{e_r}\\+[(f_r\frac{1}{r}\mathrm{cos \theta-f_\theta\frac{1}{r}\mathrm{sin\theta}})\mathrm{-sin\theta}+(f_r\mathrm{sin\theta+f_\theta\frac{1}{r}\mathrm{cos\theta}})\mathrm{cos\theta}]\mathbf{e_\theta}+f_z\mathbf{e_z}\\=f_r\mathbf{e_r}+\frac{1}{r}f_\theta \mathbf{e_\theta}+f_z\mathbf{e_z} ∇f=fx+fy+fz=[(frcosθ−fθr1sinθ)cosθ+(frsinθ+fθr1cosθ)sinθ]er+[(frr1cosθ−fθr1sinθ)−sinθ+(frsinθ+fθr1cosθ)cosθ]eθ+fzez=frer+r1fθeθ+fzez
有了上述的工具,我们下一步要做的将Navier-Stokes方程直角坐标表达中的各种算子替换成上述的极坐标表示,整理合并即可。
对于NS方程,对左端求物质导数,NS方程表达为:
ρ ∂ V ⃗ ∂ t + ρ V ⃗ ⋅ ∇ V ⃗ = − ∇ p + ρ g ⃗ + μ ∇ 2 V ⃗ {\rho \frac{\partial \vec{V}}{\partial t}+\rho\vec V \cdot \nabla \vec V=-\nabla p+\rho \vec{g}+\mu \nabla^{2} \vec{V}} ρ∂t∂V+ρV⋅∇V=−∇p+ρg+μ∇2V
外力项不涉及求导,不发生变换,只要替换相应的变量即可。所以我们只要计算时间导数项,对流项,压强项和粘性项,以及连续性方程。
我们想做的事情是,在NS方程的分量表达式
ρ ( ∂ u ∂ t + u ∂ u ∂ x + v ∂ u ∂ y + w ∂ u ∂ z ) = − ∂ P ∂ x + ρ g x + μ ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 ) \rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right)=-\frac{\partial P}{\partial x}+\rho g_{x}+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right) ρ(∂t∂u+u∂x∂u+v∂y∂u+w∂z∂u)=−∂x∂P+ρgx+μ(∂x2∂2u+∂y2∂2u+∂z2∂2u)
ρ ( ∂ v ∂ t + u ∂ v ∂ x + v ∂ v ∂ y + w ∂ v ∂ z ) = − ∂ P ∂ y + ρ g y + μ ( ∂ 2 v ∂ x 2 + ∂ 2 v ∂ y 2 + ∂ 2 v ∂ z 2 ) \rho\left(\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right)=-\frac{\partial P}{\partial y}+\rho g_{y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right) ρ(∂t∂v+u∂x∂v+v∂y∂v+w∂z∂v)=−∂y∂P+ρgy+μ(∂x2∂2v+∂y2∂2v+∂z2∂2v)
ρ ( ∂ w ∂ t + u ∂ w ∂ x + v ∂ w ∂ y + w ∂ w ∂ z ) = − ∂ P ∂ z + ρ g z + μ ( ∂ 2 w ∂ x 2 + ∂ 2 w ∂ y 2 + ∂ 2 w ∂ z 2 ) \rho\left(\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right)=-\frac{\partial P}{\partial z}+\rho g_{z}+\mu\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right) ρ(∂t∂w+u∂x∂w+v∂y∂w+w∂z∂w)=−∂z∂P+ρgz+μ(∂x2∂2w+∂y2∂2w+∂z2∂2w)
当中,将 u , v , w u,v,w u,v,w换成 u r , u θ , u z u_r,u_\theta,u_z ur,uθ,uz,并且我柱坐标系下的三个式子是关于 e r , e θ , e z \mathbf{e_r,e_\theta,e_z} er,eθ,ez三个方向的分量,即考虑将三个式子做线性组合,左边对左边,右边多右边:
[ 柱 式 1 柱 式 2 柱 式 3 ] = [ cos θ sin θ 0 − sin θ cos θ 0 0 0 1 ] [ 直 式 1 直 式 2 直 式 3 ] \left[ \begin{array}{c}{柱式1} \\ {柱式2} \\ {柱式3}\end{array}\right]=\left[ \begin{array}{ccc}{\cos \theta} & {\operatorname{sin} \theta} & {0} \\ {-\sin \theta} & {\cos \theta} & {0} \\ {0} & {0} & {1}\end{array}\right] \left[ \begin{array}{l}{直式1} \\ {直式2} \\ {直式3}\end{array}\right] ⎣⎡柱式1柱式2柱式3⎦⎤=⎣⎡cosθ−sinθ0sinθcosθ0001⎦⎤⎣⎡直式1直式2直式3⎦⎤
考虑直角坐标系向量到柱坐标系的替换:
V ⃗ = [ u v w ] = [ cos θ -sin θ 0 sin θ cos θ 0 0 0 1 ] [ u r u θ u z ] \vec V = \left[ \begin{array}{l}{u} \\ {v} \\ {w}\end{array}\right]=\left[ \begin{array}{ccc}{\cos \theta} & {\operatorname{-sin} \theta} & {0} \\ {\sin \theta} & {\cos \theta} & {0} \\ {0} & {0} & {1}\end{array}\right] \left[ \begin{array}{c}{{u_r}} \\ {{u_\theta}} \\ {{u_z}}\end{array}\right] V=⎣⎡uvw⎦⎤=⎣⎡cosθsinθ0-sinθcosθ0001⎦⎤⎣⎡uruθuz⎦⎤
将其代入,并利用梯度和拉普拉斯算子在柱坐标下的表示公式(不全用到):
∇ f = ∂ f ∂ r e r + 1 r ∂ f ∂ θ e θ + ∂ f ∂ z e z ∇ ⋅ f = 1 r ∂ ∂ r ( r f r ) + 1 r ∂ f θ ∂ θ + ∂ f z ∂ z ∇ × f = ( 1 r ∂ f z ∂ θ − ∂ f θ ∂ z ) e r + ( ∂ f r ∂ z − ∂ f z ∂ r ) e θ + 1 r ( ∂ ∂ r ( r f θ ) − ∂ f r ∂ θ ) e z ∇ 2 f = 1 r ∂ ∂ r ( r ∂ f ∂ r ) + 1 r 2 ∂ 2 f ∂ θ 2 + ∂ 2 f ∂ z 2 \begin{aligned} \nabla f &=\frac{\partial f}{\partial r} \mathbf{e_r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \mathbf{e_\theta}+\frac{\partial f}{\partial z} \mathbf{e_z}\\ \nabla \cdot \boldsymbol{f} &=\frac{1}{r} \frac{\partial}{\partial r}\left(r f_{r}\right)+\frac{1}{r} \frac{\partial f_{\theta}}{\partial \theta}+\frac{\partial f_{z}}{\partial z} \\ \nabla \times \boldsymbol{f} &=\left(\frac{1}{r} \frac{\partial f_{z}}{\partial \theta}-\frac{\partial f_{\theta}}{\partial z}\right) \mathbf{e_r}+\left(\frac{\partial f_{r}}{\partial z}-\frac{\partial f_{z}}{\partial r}\right) \mathbf{e_\theta}+\frac{1}{r}\left(\frac{\partial}{\partial r}\left(r f_{\theta}\right)-\frac{\partial f_{r}}{\partial \theta}\right) \mathbf{e_z}\\ \nabla^{2} f &=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \end{aligned} ∇f∇⋅f∇×f∇2f=∂r∂fer+r1∂θ∂feθ+∂z∂fez=r1∂r∂(rfr)+r1∂θ∂fθ+∂z∂fz=(r1∂θ∂fz−∂z∂fθ)er+(∂z∂fr−∂r∂fz)eθ+r1(∂r∂(rfθ)−∂θ∂fr)ez=r1∂r∂(r∂r∂f)+r21∂θ2∂2f+∂z2∂2f
另外链式法则需要用到两个坐标系变换的求导关系:
综上进行合并整理,即可。
由柱坐标下的散度公式,可知不可压连续性条件为:
1 r ∂ ( r u r ) ∂ r + 1 r ∂ ( u θ ) ∂ θ + ∂ u z ∂ z = 0 \frac{1}{r} \frac{\partial\left(r u_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial\left(u_{\theta}\right)}{\partial \theta}+\frac{\partial u_{z}}{\partial z}=0 r1∂r∂(rur)+r1∂θ∂(uθ)+∂z∂uz=0
因为柱坐标变换是对空间的变换,不涉及时间变量,所以时间导数项在直角坐标系下不发生变化,做一个式分量的线性组合即可。
[ ∂ u r ∂ t ∂ u θ ∂ t ∂ u z ∂ t ] = [ cos θ sin θ 0 − sin θ cos θ 0 0 0 1 ] [ ∂ u ∂ t ∂ v ∂ t ∂ w ∂ t ] \left[ \begin{array}{c}{\frac{\partial u_r}{\partial t}} \\ {\frac{\partial u_\theta}{\partial t}} \\ {\frac{\partial u_z}{\partial t}}\end{array}\right]=\left[ \begin{array}{ccc}{\cos \theta} & {\operatorname{sin} \theta} & {0} \\ {-\sin \theta} & {\cos \theta} & {0} \\ {0} & {0} & {1}\end{array}\right] \left[ \begin{array}{l}{\frac{\partial u}{\partial t}} \\ {\frac{\partial v}{\partial t}} \\ {\frac{\partial w}{\partial t}}\end{array}\right] ⎣⎡∂t∂ur∂t∂uθ∂t∂uz⎦⎤=⎣⎡cosθ−sinθ0sinθcosθ0001⎦⎤⎣⎡∂t∂u∂t∂v∂t∂w⎦⎤
因为 V ⃗ \vec V V是一个向量,我们可以分别考虑它的每一个分量:
ρ V ⃗ ⋅ ∇ f = ρ ( ∂ f ∂ r u + 1 r ∂ f ∂ θ v + ∂ f ∂ z w ) \rho\vec{V}\cdot \nabla f =\rho(\frac{\partial f}{\partial r} {u}+\frac{1}{r} \frac{\partial f}{\partial \theta} {v}+\frac{\partial f}{\partial z} {w}) ρV⋅∇f=ρ(∂r∂fu+r1∂θ∂fv+∂z∂fw)
将 f f f分别替换为 u , v , w u,v,w u,v,w,并将其替换为 u r , u θ , u z u_r,u_\theta,u_z ur,uθ,uz,合并化简,即可得到对流项。
ρ ( u r ∂ u r ∂ r + u θ r ∂ u r ∂ θ − u θ 2 r + u z ∂ u r ∂ z ) \begin{array}{l}{\rho\left(u_{r} \frac{\partial u_{r}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{r}}{\partial \theta}-\frac{u_{\theta}^{2}}{r}+u_{z} \frac{\partial u_{r}}{\partial z}\right)} \end{array} ρ(ur∂r∂ur+ruθ∂θ∂ur−ruθ2+uz∂z∂ur)
ρ ( u r ∂ u θ ∂ r + u θ r ∂ u θ ∂ θ + u r u θ r + u z ∂ u θ ∂ z ) \begin{array}{l}{\rho\left(u_{r} \frac{\partial u_{\theta}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{u_{r} u_{\theta}}{r}+u_{z} \frac{\partial u_{\theta}}{\partial z}\right)} \end{array} ρ(ur∂r∂uθ+ruθ∂θ∂uθ+ruruθ+uz∂z∂uθ)
ρ ( u r ∂ u z ∂ r + u θ r ∂ u z ∂ θ + u z ∂ u z ∂ z ) \begin{array}{l}{\rho\left(u_{r} \frac{\partial u_{z}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{z}}{\partial \theta}+u_{z} \frac{\partial u_{z}}{\partial z}\right)} \end{array} ρ(ur∂r∂uz+ruθ∂θ∂uz+uz∂z∂uz)
打tex比较麻烦,将手算稿纸黏贴如下,( ρ \rho ρ在外面,先不考虑,下同):
我们想要的其实就是直角坐标系中的各个分量在柱坐标系下的表达,由前提到的梯度公式,直接可得:
− ∇ p = − ∂ p ∂ r e r − 1 r ∂ p ∂ θ e θ − ∂ p ∂ z e z -\nabla p =- \frac{\partial p}{\partial r} \mathbf{e_r}-\frac{1}{r} \frac{\partial p}{\partial \theta} \mathbf{e_\theta}-\frac{\partial p}{\partial z} \mathbf{e_z} −∇p=−∂r∂per−r1∂θ∂peθ−∂z∂pez
∇ 2 f = 1 r ∂ ∂ r ( r ∂ f ∂ r ) + 1 r 2 ∂ 2 f ∂ θ 2 + ∂ 2 f ∂ z 2 \nabla^{2} f =\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}} ∇2f=r1∂r∂(r∂r∂f)+r21∂θ2∂2f+∂z2∂2f
将 f f f分别替换为 u , v , w u,v,w u,v,w,做式分量的线性组合,并使用 u r , u θ , u z u_r,u_\theta,u_z ur,uθ,uz线性表出替换后并整理,即可。
Tex打起来比较麻烦,手稿如下:
因为等式两边貌似没有一个统一表示的方法,所以最后只能写成分量的形式,最后方程的形式可以写为:
ρ ( ∂ u r ∂ t + u r ∂ u r ∂ r + u θ r ∂ u r ∂ θ − u θ 2 r + u z ∂ u r ∂ z ) = − ∂ P ∂ r + ρ g r + μ [ 1 r ∂ ∂ r ( r ∂ u r ∂ r ) − u r r 2 + 1 r 2 ∂ 2 u r ∂ θ 2 − 2 r 2 ∂ u θ ∂ θ + ∂ 2 u r ∂ z 2 ] \begin{array}{l}{\rho\left(\frac{\partial u_{r}}{\partial t}+u_{r} \frac{\partial u_{r}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{r}}{\partial \theta}-\frac{u_{\theta}^{2}}{r}+u_{z} \frac{\partial u_{r}}{\partial z}\right)} \\ {=-\frac{\partial P}{\partial r}+\rho g_{r}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{r}}{\partial r}\right)-\frac{u_{r}}{r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} u_{r}}{\partial \theta^{2}}-\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial^{2} u_{r}}{\partial z^{2}}\right]}\end{array} ρ(∂t∂ur+ur∂r∂ur+ruθ∂θ∂ur−ruθ2+uz∂z∂ur)=−∂r∂P+ρgr+μ[r1∂r∂(r∂r∂ur)−r2ur+r21∂θ2∂2ur−r22∂θ∂uθ+∂z2∂2ur]
ρ ( ∂ u θ ∂ t + u r ∂ u θ ∂ r + u θ r ∂ u θ ∂ θ + u r u θ r + u z ∂ u θ ∂ z ) = − 1 r ∂ P ∂ θ + ρ g θ + μ [ 1 r ∂ ∂ r ( r ∂ u θ ∂ r ) − u θ r 2 + 1 r 2 ∂ 2 u θ ∂ θ 2 + 2 r 2 ∂ u r ∂ θ + ∂ 2 u θ ∂ z 2 ] \begin{array}{l}{\rho\left(\frac{\partial u_{\theta}}{\partial t}+u_{r} \frac{\partial u_{\theta}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{u_{r} u_{\theta}}{r}+u_{z} \frac{\partial u_{\theta}}{\partial z}\right)} \\ {=-\frac{1}{r} \frac{\partial P}{\partial \theta}+\rho g_{\theta}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{\theta}}{\partial r}\right)-\frac{u_{\theta}}{r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} u_{\theta}}{\partial \theta^{2}}+\frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta}+\frac{\partial^{2} u_{\theta}}{\partial z^{2}}\right]}\end{array} ρ(∂t∂uθ+ur∂r∂uθ+ruθ∂θ∂uθ+ruruθ+uz∂z∂uθ)=−r1∂θ∂P+ρgθ+μ[r1∂r∂(r∂r∂uθ)−r2uθ+r21∂θ2∂2uθ+r22∂θ∂ur+∂z2∂2uθ]
ρ ( ∂ u z ∂ t + u r ∂ u z ∂ r + u θ r ∂ u z ∂ θ + u z ∂ u z ∂ z ) = − ∂ P ∂ z + ρ g z + μ [ 1 r ∂ ∂ r ( r ∂ u z ∂ r ) + 1 r 2 ∂ 2 u z ∂ θ 2 + ∂ 2 u z ∂ z 2 ] \begin{array}{l}{\rho\left(\frac{\partial u_{z}}{\partial t}+u_{r} \frac{\partial u_{z}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{z}}{\partial \theta}+u_{z} \frac{\partial u_{z}}{\partial z}\right)} \\ {=-\frac{\partial P}{\partial z}+\rho g_{z}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u_{z}}{\partial \theta^{2}}+\frac{\partial^{2} u_{z}}{\partial z^{2}}\right]}\end{array} ρ(∂t∂uz+ur∂r∂uz+ruθ∂θ∂uz+uz∂z∂uz)=−∂z∂P+ρgz+μ[r1∂r∂(r∂r∂uz)+r21∂θ2∂2uz+∂z2∂2uz]
不可压连续性条件为:
1 r ∂ ( r u r ) ∂ r + 1 r ∂ ( u θ ) ∂ θ + ∂ u z ∂ z = 0 \frac{1}{r} \frac{\partial\left(r u_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial\left(u_{\theta}\right)}{\partial \theta}+\frac{\partial u_{z}}{\partial z}=0 r1∂r∂(rur)+r1∂θ∂(uθ)+∂z∂uz=0