三点求平面方程、平面法向量和点到平面的距离

已知三点p1(x1,y1,z1),p2(x2,y2,z2),p3(x3,y3,z3),

要求确定的平面方程,关键在于求出平面的一个法向量

为此做向量p1p2(x2-x1,y2-y1,z2-z1), p1p3(x3-x1,y3-y1,z3-z1),平面法线和这两个向量垂直,因此法向量n:


三点求平面方程、平面法向量和点到平面的距离_第1张图片


平面方程:a(x-x1)+b(y-y1)+ c(z-z1)=0;

d=-a*x1-b*y1-c*z1。
平面平面方程为 ax+by+cz+d=0。


//已知3点坐标,求平面ax+by+cz+d=0;

void get_panel(Point p1,Point p2,Point p3,double &a,double &b,double &c,double &d)

{

    a = (p2.y - p1.y)*(p3.z - p1.z) - (p2.z - p1.z)*(p3.y - p1.y);

    b = (p2.z - p1.z)*(p3.x - p1.x) - (p2.x - p1.x)*(p3.z - p1.z);

    c = (p2.x - p1.x)*(p3.y - p1.y) - (p2.y - p1.y)*(p3.x - p1.x);

    d = 0 - (a * p1.x + b*p1.y + c*p1.z);

}


// 已知三点坐标,求法向量

Vec3 get_Normal(Point p1,Point p2,Point p3)

{

    a = (p2.y - p1.y)*(p3.z - p1.z) - (p2.z - p1.z)*(p3.y - p1.y);

    b = (p2.z - p1.z)*(p3.x - p1.x) - (p2.x - p1.x)*(p3.z - p1.z);
 
    c = (p2.x - p1.x)*(p3.y - p1.y) - (p2.y - p1.y)*(p3.x - p1.x);

    return Vec3(a, b, c);

}


//点到平面距离

double dis_pt2panel(Point pt,double a,double b,double c,double d)
{

    return f_abs(a * pt.x + b*pt.y + c*pt.z + d) / sqrt(a * a + b * b + c * c);

}




你可能感兴趣的:(2017年暑假集训,数论)