(转载)ConcurrentHaspLRUHashMap实现初探

一、      关于LRU

LRU 即 Least  Rencetly  Used(最近最少使用)缓存替换策略。在任何LRU算法中,它必定有以下两个策略组成:

1、  退化 策略。根据访问情况,对节点按热度进行排序(hot->cold),以便决定哪些节点是热节点(hot)的,哪些节点是冷节点(cold)的。这个退化的策略,一般按以下两种方式去处理:

l  非集中式。即每命中一次就进行退化操作。

非集中式的退化操作,往往由双向链表的方式去实现。每次命中之后就移动命中节点在链表中的位置。(位置靠前的就是hot的数据)。当然,复杂的策略中,有用queue数组进行hot分级等。

l  集中式。定期去进行退化操作。

在集中式的退化操作,常用的策略是:每次命中之后,记录一个时间戳、定时器时间点等等参数。由一个线程去扫描,定期清除老数据。

2、  清除 策略。即去掉那些cold的数据。

l  替换。这个在操作系统缓存中应该是一个常用的做法。

l  删除。删除掉数据,以腾出空间放新的数据。(因为内存是有限的)

二、      ConcurrentHashMap与LinkedHashMap

在JAVA中,LRU的原生实现是JDK中LinkedHashMap。LinkedHashMap继承自HashMap

【实现原理】 简单说就是HashMap的每个节点做一个双向链表。每次访问这个节点,就把该节点移动到双向链表的头部。满了以后,就从链表的尾部删除。但是LinkedHashMap并是非线程安全(其实现中,双向链表的操作是没有任何线程安全的措施的)。

对于线程安全的HashMap,在JDK中有ConcurrentHashMap原生支持。

【实现原理】采用锁分离机制,把一个HashMap分成多个segement,对每个segement的写操作上锁。同时,他的get()操作是没有锁的,具体思想就是把每个hash槽中的链表的头节点置成final的。对hash槽中链表操作,只能从头部去处理。这样就不会有读不一致的情况出现。这个原理,最好还是看源码,比较清晰。

三、      ConcurrentLRUHashMap的实现方式一:直接包装LinkedHashMap。

即,在LinkedHashMap外层全部加锁。

典型代码:

public V get(Object key) {
 lock.lock();
 try {
 return super.get(key);
 }
 finally {
 lock.unlock();
 }
 }

对LinkedHashMap做包装,所有访问都是带锁委托给LinkedHashMap。这样虽然解决了多线程安全问题。但是,是以严重的性能消耗为代价代价。

四、      ConcurrentLRUHashMap实现方式二:直接改造ConcurrentHashMap

该方案主要是重写ConcurrentHashMap。

1、  给每个Entry加一个timestamp。

2、  每次get命中的话,修改时间戳。

3、  定时统计整个map的总量,如果总量大于某个阈值,则deadline往后推。同时,在put的时候,检查hash槽里面每个节点的时间戳,如果已经过期,就删除掉过期节点。

上述做法,删除操作分布在每次put操作中。所以,删除效率比较高。但是,由于时间片不可控,最终将导致内存爆炸的情况出现。

请看下面一种场景:

横坐标表示一个时间片。面积表示这个时间片里面节点数量。

假定节点命中率为50%(命中后,更新到命中时刻的时间片),每个时间片写入10条新数据。

我们可以在运行过程中,每个时间片定义一个更新一次deadline。在put数据的时候,我们可以检查hash槽中Entry是否过期,如果已经过期,则删掉过期数据。

对于deadline的计算,我们可以设置三个阈值(a

a)         totalCount

b)         a

c)         b

d)         totalCount>c     deadline=currentTime

上述看似非常优雅的方案,却隐藏几个严重的问题:

1、  时间片的选择问题。

这个方案中,时间片的选择是一个比较困难的问题。因为,如果系统在一个时间片之内爆掉内存的话,系统将直接崩溃。

当然,这个问题,我们可以加外部限制得方式去控制

2、  deadline 之前的数据,不能很快删除。导致deaddata滞留,浪费大量的内存

假定 deadline之前的数据,约为总数据量的10%。因为删数据操作,只在put的时候。假定每个时间点的put操作,能覆盖20%的hash槽。这个10%*20%=2%,每个时间点,只能删除2%的过期数据。然后,随着时间的推移。这个过程必将趋于稳定。而这个趋于稳定后,内存消耗,至少是capacity的4-5倍。这样的消耗和浪费。是难以承受的。

这个方案,从实际测试来看,情况非常糟糕。所以最终还是放弃了。

五、      ConcurrentLRUHashMap实现方式三:分段实现锁分离+每个段内维护一份退化链表

【实现策略】:

1、锁分离机制。内部分成了多个segement,每个segement是独立加锁,相互不干扰。

2、每个segement内部维护一个双向链表(退化链表)。每次命中/添加,就把节点移动到退化链表头部。

3、每次put操作,通过hash,散到每个segement中,判断segment的容量是否到达阈值。 如果到达阈值,则删除退化链表中最末尾的节点。

【实现】

1、重新定义HashEntry


static class HashEntry {
/**
* 键
*/
final K key;
/**
* hash值
*/
final int hash;
/**
* 值
*/
volatile V value;
/**
* hash链指针
*/
final HashEntry next;
/**
* 双向链表的下一个节点
*/
HashEntry linknext;
/**
* 双向链表的下一个节点
*/
HashEntry linkpref;
/**
* 死亡标记
*/
AtomicBoolean dead;
}

2、定义segment

static final class Segment extends ReentrantLock implements

			Serializable {

		private static final long serialVersionUID = 1L;

		transient int threshold;

		transient volatile int count;

		transient int modCount;

		transient volatile HashEntry[] table;

		transient final HashEntry header;// 头节点

}

3、  put操作

代码太长了,见附件吧

4、  get操作

		V get(Object key, int hash) {
			HashEntry e = getFirst(hash);
			// 遍历查找
			while (e != null) {
				if (e.hash == hash && key.equals(e.key)) {
					V v = e.value;
					// 把节点移动到头部。
					moveNodeToHeader(e);
					if (v != null)
						return v;
					// 在锁的情况读,必定能读到。
					// tab[index] = new HashEntry(key, hash, first, value),
					// value赋值和tab[index]赋值可能会重新排序,重新排序之后,可能会读空值
					// 读到空值的话,在有锁的情况在再读一遍,一定能读!
					return readValueUnderLock(e); // recheck
				}
				e = e.next;
			}
			return null;

六、      ConcurrentLRUHashMap实现方式四:

具体的做法是:

1、  对concurrentHashMap 每个节点加时间戳,每次命中只修改该节点的时间戳。

2、  集中式退化操作,每次命中并不进行退化操作。而是集中式进行退化操作(满的时候,或者时间到了)。

代码:

private static class CountableKey implements Comparable> {

		public CountableKey(K key,V value) {

			if (value == null) {

				throw new NullPointerException("should not be null");

			}

			this.value = value;

			this.key = key;

			refreshTimeStamp();

		}

		

		public void refreshTimeStamp(){

			timestamp.set(System.currentTimeMillis());

		}

		final V value;

		final K key;

		AtomicLong timestamp = new AtomicLong();

		

		@Override

		public int compareTo(CountableKey o) {

			long thisval = this.timestamp.get();

			long anotherVal = o.timestamp.get();

			return (thisval < anotherVal?-1:(thisval == anotherVal?0:1));

		}

	}

该方案的好处:

1、  快速执行get操作。get操作的时间是“concurrentHashMap的get时间+更新时间戳”的时间。

2、  put操作,一般的put操作的时间是“concurrentHashMap的put时间”,只要还未到达容量限制。而到达容量限制以后的,需要进行“退化,清理操作”+put的时间

该方案的 可能存在的问题:

1、  命中率,该算法的命中率同linkedHashMap

2、  清除 策略:

l  满了,执行清楚。缺点:1、会出现某个时刻,写操作卡死(如果正在等待清理的话)

l  定时执行。缺点:1、性能耗费。2、读不一致仍然无法避免。

七、      ConcurrentLRUHashMap实现方式的比较

本文只是抛砖引玉,希望能看到更多好多ConcurrentLRUHashMap的实现方式。由于能力有限。上文提到的第二种实现方式,在实际实现中并不能很好的退化,最终可能导致内存溢出。具体分析如下表

方式 方式一 方式二 方式三 方式四
性能
线程安全 绝对安全 安全 安全 安全
内存消耗 一般 很多 一般 一般
稳定性 稳定 不稳定 稳定 不稳定

总体来说,第三者性较好。

比较方式一和方式三:



源代码如下:

package com.googlecode.jue.util;

import java.io.IOException;
import java.io.Serializable;
import java.util.AbstractCollection;
import java.util.AbstractMap;
import java.util.AbstractSet;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.locks.ReentrantLock;

/**
 * 基于ConcurrentHashMap修改的LRUMap
 * 
 * @author noah
 * 
 * @param 
 * @param 
 */
public class ConcurrentLRUHashMap extends AbstractMap implements
                ConcurrentMap, Serializable {

        /*
         * The basic strategy is to subdivide the table among Segments, each of
         * which itself is a concurrently readable hash table.
         */

        /* ---------------- Constants -------------- */

        /**
         * 
         */
        private static final long serialVersionUID = -5031526786765467550L;

        /**
         * Segement默认最大数
         */
        static final int DEFAULT_SEGEMENT_MAX_CAPACITY = 100;

        /**
         * The default load factor for this table, used when not otherwise specified
         * in a constructor.
         */
        static final float DEFAULT_LOAD_FACTOR = 0.75f;

        /**
         * The default concurrency level for this table, used when not otherwise
         * specified in a constructor.
         */
        static final int DEFAULT_CONCURRENCY_LEVEL = 16;

        /**
         * The maximum capacity, used if a higher value is implicitly specified by
         * either of the constructors with arguments. MUST be a power of two <=
         * 1<<30 to ensure that entries are indexable using ints.
         */
        static final int MAXIMUM_CAPACITY = 1 << 30;

        /**
         * The maximum number of segments to allow; used to bound constructor
         * arguments.
         */
        static final int MAX_SEGMENTS = 1 << 16; // slightly conservative

        /**
         * Number of unsynchronized retries in size and containsValue methods before
         * resorting to locking. This is used to avoid unbounded retries if tables
         * undergo continuous modification which would make it impossible to obtain
         * an accurate result.
         */
        static final int RETRIES_BEFORE_LOCK = 2;

        /* ---------------- Fields -------------- */

        /**
         * Mask value for indexing into segments. The upper bits of a key's hash
         * code are used to choose the segment.
         */
        final int segmentMask;

        /**
         * Shift value for indexing within segments.
         */
        final int segmentShift;

        /**
         * The segments, each of which is a specialized hash table
         */
        final Segment[] segments;

        transient Set keySet;
        transient Set> entrySet;
        transient Collection values;

        /* ---------------- Small Utilities -------------- */

        /**
         * Applies a supplemental hash function to a given hashCode, which defends
         * against poor quality hash functions. This is critical because
         * ConcurrentHashMap uses power-of-two length hash tables, that otherwise
         * encounter collisions for hashCodes that do not differ in lower or upper
         * bits.
         */
        private static int hash(int h) {
                // Spread bits to regularize both segment and index locations,
                // using variant of single-word Wang/Jenkins hash.
                h += (h << 15) ^ 0xffffcd7d;
                h ^= (h >>> 10);
                h += (h << 3);
                h ^= (h >>> 6);
                h += (h << 2) + (h << 14);
                return h ^ (h >>> 16);
        }

        /**
         * Returns the segment that should be used for key with given hash
         * 
         * @param hash
         *            the hash code for the key
         * @return the segment
         */
        final Segment segmentFor(int hash) {
                return segments[(hash >>> segmentShift) & segmentMask];
        }

        /* ---------------- Inner Classes -------------- */

        /**
         * 修改原HashEntry,
         */
        static final class HashEntry {
                /**
                 * 键
                 */
                final K key;

                /**
                 * hash值
                 */
                final int hash;

                /**
                 * 值
                 */
                volatile V value;

                /**
                 * hash链指针
                 */
                final HashEntry next;

                /**
                 * 双向链表的下一个节点
                 */
                HashEntry linkNext;

                /**
                 * 双向链表的上一个节点
                 */
                HashEntry linkPrev;

                /**
                 * 死亡标记
                 */
                AtomicBoolean dead;

                HashEntry(K key, int hash, HashEntry next, V value) {
                        this.key = key;
                        this.hash = hash;
                        this.next = next;
                        this.value = value;
                        dead = new AtomicBoolean(false);
                }

                @SuppressWarnings("unchecked")
                static final  HashEntry[] newArray(int i) {
                        return new HashEntry[i];
                }
        }

        /**
         * 基于原Segment修改,内部实现一个双向列表
         * 
         * @author noah
         * 
         * @param 
         * @param 
         */
        static final class Segment extends ReentrantLock implements Serializable {
                /*
                 * Segments maintain a table of entry lists that are ALWAYS kept in a
                 * consistent state, so can be read without locking. Next fields of
                 * nodes are immutable (final). All list additions are performed at the
                 * front of each bin. This makes it easy to check changes, and also fast
                 * to traverse. When nodes would otherwise be changed, new nodes are
                 * created to replace them. This works well for hash tables since the
                 * bin lists tend to be short. (The average length is less than two for
                 * the default load factor threshold.)
                 * 
                 * Read operations can thus proceed without locking, but rely on
                 * selected uses of volatiles to ensure that completed write operations
                 * performed by other threads are noticed. For most purposes, the
                 * "count" field, tracking the number of elements, serves as that
                 * volatile variable ensuring visibility. This is convenient because
                 * this field needs to be read in many read operations anyway:
                 * 
                 * - All (unsynchronized) read operations must first read the "count"
                 * field, and should not look at table entries if it is 0.
                 * 
                 * - All (synchronized) write operations should write to the "count"
                 * field after structurally changing any bin. The operations must not
                 * take any action that could even momentarily cause a concurrent read
                 * operation to see inconsistent data. This is made easier by the nature
                 * of the read operations in Map. For example, no operation can reveal
                 * that the table has grown but the threshold has not yet been updated,
                 * so there are no atomicity requirements for this with respect to
                 * reads.
                 * 
                 * As a guide, all critical volatile reads and writes to the count field
                 * are marked in code comments.
                 */

                private static final long serialVersionUID = 2249069246763182397L;

                /**
                 * The number of elements in this segment's region.
                 */
                transient volatile int count;

                /**
                 * Number of updates that alter the size of the table. This is used
                 * during bulk-read methods to make sure they see a consistent snapshot:
                 * If modCounts change during a traversal of segments computing size or
                 * checking containsValue, then we might have an inconsistent view of
                 * state so (usually) must retry.
                 */
                transient int modCount;

                /**
                 * The table is rehashed when its size exceeds this threshold. (The
                 * value of this field is always (int)(capacity *
                 * loadFactor).)
                 */
                transient int threshold;

                /**
                 * The per-segment table.
                 */
                transient volatile HashEntry[] table;

                /**
                 * The load factor for the hash table. Even though this value is same
                 * for all segments, it is replicated to avoid needing links to outer
                 * object.
                 * 
                 * @serial
                 */
                final float loadFactor;

                /**
                 * 头节点
                 */
                transient final HashEntry header;
                
                /**
                 * Segement最大容量
                 */
                final int maxCapacity;

                Segment(int maxCapacity, float lf, ConcurrentLRUHashMap lruMap) {
                        this.maxCapacity = maxCapacity;
                        loadFactor = lf;
                        setTable(HashEntry. newArray(maxCapacity));
                        header = new HashEntry(null, -1, null, null);
                        header.linkNext = header;
                        header.linkPrev = header;
                }

                @SuppressWarnings("unchecked")
                static final  Segment[] newArray(int i) {
                        return new Segment[i];
                }

                /**
                 * Sets table to new HashEntry array. Call only while holding lock or in
                 * constructor.
                 */
                void setTable(HashEntry[] newTable) {
                        threshold = (int) (newTable.length * loadFactor);
                        table = newTable;
                }

                /**
                 * Returns properly casted first entry of bin for given hash.
                 */
                HashEntry getFirst(int hash) {
                        HashEntry[] tab = table;
                        return tab[hash & (tab.length - 1)];
                }

                /**
                 * Reads value field of an entry under lock. Called if value field ever
                 * appears to be null. This is possible only if a compiler happens to
                 * reorder a HashEntry initialization with its table assignment, which
                 * is legal under memory model but is not known to ever occur.
                 */
                V readValueUnderLock(HashEntry e) {
                        lock();
                        try {
                                return e.value;
                        } finally {
                                unlock();
                        }
                }

                /* Specialized implementations of map methods */

                V get(Object key, int hash) {
                        lock();
                        try {
                                if (count != 0) { // read-volatile
                                        HashEntry e = getFirst(hash);
                                        while (e != null) {
                                                if (e.hash == hash && key.equals(e.key)) {
                                                        V v = e.value;
                                                        // 将节点移动到头节点之前
                                                        moveNodeToHeader(e);
                                                        if (v != null)
                                                                return v;
                                                        return readValueUnderLock(e); // recheck
                                                }
                                                e = e.next;
                                        }
                                }
                                return null;
                        } finally {
                                unlock();
                        }
                }

                /**
                 * 将节点移动到头节点之前
                 * 
                 * @param entry
                 */
                void moveNodeToHeader(HashEntry entry) {
                        // 先移除,然后插入到头节点的前面
                        removeNode(entry);
                        addBefore(entry, header);
                }

                /**
                 * 将第一个参数代表的节点插入到第二个参数代表的节点之前
                 * 
                 * @param newEntry
                 *            需要插入的节点
                 * @param entry
                 *            被插入的节点
                 */
                void addBefore(HashEntry newEntry, HashEntry entry) {
                        newEntry.linkNext = entry;
                        newEntry.linkPrev = entry.linkPrev;
                        entry.linkPrev.linkNext = newEntry;
                        entry.linkPrev = newEntry;
                }

                /**
                 * 从双向链中删除该Entry
                 * 
                 * @param entry
                 */
                void removeNode(HashEntry entry) {
                        entry.linkPrev.linkNext = entry.linkNext;
                        entry.linkNext.linkPrev = entry.linkPrev;
                }

                boolean containsKey(Object key, int hash) {
                        lock();
                        try {
                                if (count != 0) { // read-volatile
                                        HashEntry e = getFirst(hash);
                                        while (e != null) {
                                                if (e.hash == hash && key.equals(e.key)) {
                                                        moveNodeToHeader(e);
                                                        return true;
                                                }

                                                e = e.next;
                                        }
                                }
                                return false;
                        } finally {
                                unlock();
                        }
                }

                boolean containsValue(Object value) {
                        lock();
                        try {
                                if (count != 0) { // read-volatile
                                        HashEntry[] tab = table;
                                        int len = tab.length;
                                        for (int i = 0; i < len; i++) {
                                                for (HashEntry e = tab[i]; e != null; e = e.next) {
                                                        V v = e.value;
                                                        if (v == null) // recheck
                                                                v = readValueUnderLock(e);
                                                        if (value.equals(v)) {
                                                                moveNodeToHeader(e);
                                                                return true;
                                                        }

                                                }
                                        }
                                }
                                return false;
                        } finally {
                                unlock();
                        }
                }

                boolean replace(K key, int hash, V oldValue, V newValue) {
                        lock();
                        try {
                                HashEntry e = getFirst(hash);
                                while (e != null && (e.hash != hash || !key.equals(e.key)))
                                        e = e.next;

                                boolean replaced = false;
                                if (e != null && oldValue.equals(e.value)) {
                                        replaced = true;
                                        e.value = newValue;
                                        // 移动到头部
                                        moveNodeToHeader(e);
                                }
                                return replaced;
                        } finally {
                                unlock();
                        }
                }

                V replace(K key, int hash, V newValue) {
                        lock();
                        try {
                                HashEntry e = getFirst(hash);
                                while (e != null && (e.hash != hash || !key.equals(e.key)))
                                        e = e.next;

                                V oldValue = null;
                                if (e != null) {
                                        oldValue = e.value;
                                        e.value = newValue;
                                        // 移动到头部
                                        moveNodeToHeader(e);
                                }
                                return oldValue;
                        } finally {
                                unlock();
                        }
                }

                V put(K key, int hash, V value, boolean onlyIfAbsent) {
                        lock();
                        try {
                                int c = count;
                                if (c++ > threshold) // ensure capacity
                                        rehash();
                                HashEntry[] tab = table;
                                int index = hash & (tab.length - 1);
                                HashEntry first = tab[index];
                                HashEntry e = first;
                                while (e != null && (e.hash != hash || !key.equals(e.key)))
                                        e = e.next;

                                V oldValue = null;
                                if (e != null) {
                                        oldValue = e.value;
                                        if (!onlyIfAbsent) {
                                                e.value = value;
                                                // 移动到头部
                                                moveNodeToHeader(e);
                                        }
                                } else {
                                        oldValue = null;
                                        ++modCount;
                                        HashEntry newEntry = new HashEntry(key, hash, first, value);
                                        tab[index] = newEntry;
                                        count = c; // write-volatile
                                        // 添加到双向链
                                        addBefore(newEntry, header);
                                        // 判断是否达到最大值
                                        removeEldestEntry();
                                }
                                return oldValue;
                        } finally {
                                unlock();
                        }
                }

                void rehash() {
                        HashEntry[] oldTable = table;
                        int oldCapacity = oldTable.length;
                        if (oldCapacity >= MAXIMUM_CAPACITY)
                                return;

                        /*
                         * Reclassify nodes in each list to new Map. Because we are using
                         * power-of-two expansion, the elements from each bin must either
                         * stay at same index, or move with a power of two offset. We
                         * eliminate unnecessary node creation by catching cases where old
                         * nodes can be reused because their next fields won't change.
                         * Statistically, at the default threshold, only about one-sixth of
                         * them need cloning when a table doubles. The nodes they replace
                         * will be garbage collectable as soon as they are no longer
                         * referenced by any reader thread that may be in the midst of
                         * traversing table right now.
                         */

                        HashEntry[] newTable = HashEntry.newArray(oldCapacity << 1);
                        threshold = (int) (newTable.length * loadFactor);
                        int sizeMask = newTable.length - 1;
                        for (int i = 0; i < oldCapacity; i++) {
                                // We need to guarantee that any existing reads of old Map can
                                // proceed. So we cannot yet null out each bin.
                                HashEntry e = oldTable[i];

                                if (e != null) {
                                        HashEntry next = e.next;
                                        int idx = e.hash & sizeMask;

                                        // Single node on list
                                        if (next == null)
                                                newTable[idx] = e;

                                        else {
                                                // Reuse trailing consecutive sequence at same slot
                                                HashEntry lastRun = e;
                                                int lastIdx = idx;
                                                for (HashEntry last = next; last != null; last = last.next) {
                                                        int k = last.hash & sizeMask;
                                                        if (k != lastIdx) {
                                                                lastIdx = k;
                                                                lastRun = last;
                                                        }
                                                }
                                                newTable[lastIdx] = lastRun;

                                                // Clone all remaining nodes
                                                for (HashEntry p = e; p != lastRun; p = p.next) {
                                                        int k = p.hash & sizeMask;
                                                        HashEntry n = newTable[k];
                                                        HashEntry newEntry = new HashEntry(
                                                                        p.key, p.hash, n, p.value);
                                                        // update by Noah
                                                        newEntry.linkNext = p.linkNext;
                                                        newEntry.linkPrev = p.linkPrev;
                                                        newTable[k] = newEntry;
                                                }
                                        }
                                }
                        }
                        table = newTable;
                }

                /**
                 * Remove; match on key only if value null, else match both.
                 */
                V remove(Object key, int hash, Object value) {
                        lock();
                        try {
                                int c = count - 1;
                                HashEntry[] tab = table;
                                int index = hash & (tab.length - 1);
                                HashEntry first = tab[index];
                                HashEntry e = first;
                                while (e != null && (e.hash != hash || !key.equals(e.key)))
                                        e = e.next;

                                V oldValue = null;
                                if (e != null) {
                                        V v = e.value;
                                        if (value == null || value.equals(v)) {
                                                oldValue = v;
                                                // All entries following removed node can stay
                                                // in list, but all preceding ones need to be
                                                // cloned.
                                                ++modCount;
                                                HashEntry newFirst = e.next;
                                                for (HashEntry p = first; p != e; p = p.next) {
                                                        newFirst = new HashEntry(p.key, p.hash,
                                                                        newFirst, p.value);
                                                        newFirst.linkNext = p.linkNext;
                                                        newFirst.linkPrev = p.linkPrev;
                                                }
                                                tab[index] = newFirst;
                                                count = c; // write-volatile
                                                // 移除节点
                                                removeNode(e);
                                        }
                                }
                                return oldValue;
                        } finally {
                                unlock();
                        }
                }

                /**
                 * 移除最旧元素
                 */
                void removeEldestEntry() {
                        if (count > this.maxCapacity) {
                                HashEntry eldest = header.linkNext;
                                remove(eldest.key, eldest.hash, null);
                        }
                }

                void clear() {
                        if (count != 0) {
                                lock();
                                try {
                                        HashEntry[] tab = table;
                                        for (int i = 0; i < tab.length; i++)
                                                tab[i] = null;
                                        ++modCount;
                                        count = 0; // write-volatile
                                } finally {
                                        unlock();
                                }
                        }
                }
        }

        /**
         * 使用指定参数,创建一个ConcurrentLRUHashMap
         * 
         * @param segementCapacity
         *            Segement最大容量
         * @param loadFactor
         *            加载因子
         * @param concurrencyLevel
         *            并发级别
         */
        public ConcurrentLRUHashMap(int segementCapacity, float loadFactor,
                        int concurrencyLevel) {
                if (!(loadFactor > 0) || segementCapacity < 0 || concurrencyLevel <= 0)
                        throw new IllegalArgumentException();

                if (concurrencyLevel > MAX_SEGMENTS)
                        concurrencyLevel = MAX_SEGMENTS;

                // Find power-of-two sizes best matching arguments
                int sshift = 0;
                int ssize = 1;
                while (ssize < concurrencyLevel) {
                        ++sshift;
                        ssize <<= 1;
                }
                segmentShift = 32 - sshift;
                segmentMask = ssize - 1;
                this.segments = Segment.newArray(ssize);

                for (int i = 0; i < this.segments.length; ++i)
                        this.segments[i] = new Segment(segementCapacity, loadFactor, this);
        }

        /**
         * 使用指定参数,创建一个ConcurrentLRUHashMap
         * 
         * @param segementCapacity
         *            Segement最大容量
         * @param loadFactor
         *            加载因子
         */
        public ConcurrentLRUHashMap(int segementCapacity, float loadFactor) {
                this(segementCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
        }

        /**
         * 使用指定参数,创建一个ConcurrentLRUHashMap
         * 
         * @param segementCapacity
         *            Segement最大容量
         */
        public ConcurrentLRUHashMap(int segementCapacity) {
                this(segementCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
        }

        /**
         * 使用默认参数,创建一个ConcurrentLRUHashMap,存放元素最大数默认为1000, 加载因子为0.75,并发级别16
         */
        public ConcurrentLRUHashMap() {
                this(DEFAULT_SEGEMENT_MAX_CAPACITY, DEFAULT_LOAD_FACTOR,
                                DEFAULT_CONCURRENCY_LEVEL);
        }

        /**
         * Returns true if this map contains no key-value mappings.
         * 
         * @return true if this map contains no key-value mappings
         */
        public boolean isEmpty() {
                final Segment[] segments = this.segments;
                /*
                 * We keep track of per-segment modCounts to avoid ABA problems in which
                 * an element in one segment was added and in another removed during
                 * traversal, in which case the table was never actually empty at any
                 * point. Note the similar use of modCounts in the size() and
                 * containsValue() methods, which are the only other methods also
                 * susceptible to ABA problems.
                 */
                int[] mc = new int[segments.length];
                int mcsum = 0;
                for (int i = 0; i < segments.length; ++i) {
                        if (segments[i].count != 0)
                                return false;
                        else
                                mcsum += mc[i] = segments[i].modCount;
                }
                // If mcsum happens to be zero, then we know we got a snapshot
                // before any modifications at all were made. This is
                // probably common enough to bother tracking.
                if (mcsum != 0) {
                        for (int i = 0; i < segments.length; ++i) {
                                if (segments[i].count != 0 || mc[i] != segments[i].modCount)
                                        return false;
                        }
                }
                return true;
        }

        /**
         * Returns the number of key-value mappings in this map. If the map contains
         * more than Integer.MAX_VALUE elements, returns
         * Integer.MAX_VALUE.
         * 
         * @return the number of key-value mappings in this map
         */
        public int size() {
                final Segment[] segments = this.segments;
                long sum = 0;
                long check = 0;
                int[] mc = new int[segments.length];
                // Try a few times to get accurate count. On failure due to
                // continuous async changes in table, resort to locking.
                for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
                        check = 0;
                        sum = 0;
                        int mcsum = 0;
                        for (int i = 0; i < segments.length; ++i) {
                                sum += segments[i].count;
                                mcsum += mc[i] = segments[i].modCount;
                        }
                        if (mcsum != 0) {
                                for (int i = 0; i < segments.length; ++i) {
                                        check += segments[i].count;
                                        if (mc[i] != segments[i].modCount) {
                                                check = -1; // force retry
                                                break;
                                        }
                                }
                        }
                        if (check == sum)
                                break;
                }
                if (check != sum) { // Resort to locking all segments
                        sum = 0;
                        for (int i = 0; i < segments.length; ++i)
                                segments[i].lock();
                        for (int i = 0; i < segments.length; ++i)
                                sum += segments[i].count;
                        for (int i = 0; i < segments.length; ++i)
                                segments[i].unlock();
                }
                if (sum > Integer.MAX_VALUE)
                        return Integer.MAX_VALUE;
                else
                        return (int) sum;

        }

        /**
         * Returns the value to which the specified key is mapped, or {@code null}
         * if this map contains no mapping for the key.
         * 
         * 

* More formally, if this map contains a mapping from a key {@code k} to a * value {@code v} such that {@code key.equals(k)}, then this method returns * {@code v}; otherwise it returns {@code null}. (There can be at most one * such mapping.) * * @throws NullPointerException * if the specified key is null */ public V get(Object key) { int hash = hash(key.hashCode()); return segmentFor(hash).get(key, hash); } /** * Tests if the specified object is a key in this table. * * @param key * possible key * @return true if and only if the specified object is a key in * this table, as determined by the equals method; * false otherwise. * @throws NullPointerException * if the specified key is null */ public boolean containsKey(Object key) { int hash = hash(key.hashCode()); return segmentFor(hash).containsKey(key, hash); } /** * Returns true if this map maps one or more keys to the specified * value. Note: This method requires a full internal traversal of the hash * table, and so is much slower than method containsKey. * * @param value * value whose presence in this map is to be tested * @return true if this map maps one or more keys to the specified * value * @throws NullPointerException * if the specified value is null */ public boolean containsValue(Object value) { if (value == null) throw new NullPointerException(); // See explanation of modCount use above final Segment[] segments = this.segments; int[] mc = new int[segments.length]; // Try a few times without locking for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { int mcsum = 0; for (int i = 0; i < segments.length; ++i) { mcsum += mc[i] = segments[i].modCount; if (segments[i].containsValue(value)) return true; } boolean cleanSweep = true; if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { if (mc[i] != segments[i].modCount) { cleanSweep = false; break; } } } if (cleanSweep) return false; } // Resort to locking all segments for (int i = 0; i < segments.length; ++i) segments[i].lock(); boolean found = false; try { for (int i = 0; i < segments.length; ++i) { if (segments[i].containsValue(value)) { found = true; break; } } } finally { for (int i = 0; i < segments.length; ++i) segments[i].unlock(); } return found; } /** * Legacy method testing if some key maps into the specified value in this * table. This method is identical in functionality to * {@link #containsValue}, and exists solely to ensure full compatibility * with class {@link java.util.Hashtable}, which supported this method prior * to introduction of the Java Collections framework. * * @param value * a value to search for * @return true if and only if some key maps to the value * argument in this table as determined by the equals * method; false otherwise * @throws NullPointerException * if the specified value is null */ public boolean contains(Object value) { return containsValue(value); } /** * Put一个键值,加Map锁 */ public V put(K key, V value) { if (value == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).put(key, hash, value, false); } /** * Put一个键值,如果该Key不存在的话 */ public V putIfAbsent(K key, V value) { if (value == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).put(key, hash, value, true); } /** * Copies all of the mappings from the specified map to this one. These * mappings replace any mappings that this map had for any of the keys * currently in the specified map. * * @param m * mappings to be stored in this map */ public void putAll(Map m) { for (Map.Entry e : m.entrySet()) put(e.getKey(), e.getValue()); } /** * Removes the key (and its corresponding value) from this map. This method * does nothing if the key is not in the map. * * @param key * the key that needs to be removed * @return the previous value associated with key, or null * if there was no mapping for key * @throws NullPointerException * if the specified key is null */ public V remove(Object key) { int hash = hash(key.hashCode()); return segmentFor(hash).remove(key, hash, null); } /** * {@inheritDoc} * * @throws NullPointerException * if the specified key is null */ public boolean remove(Object key, Object value) { int hash = hash(key.hashCode()); if (value == null) return false; return segmentFor(hash).remove(key, hash, value) != null; } /** * {@inheritDoc} * * @throws NullPointerException * if any of the arguments are null */ public boolean replace(K key, V oldValue, V newValue) { if (oldValue == null || newValue == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).replace(key, hash, oldValue, newValue); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, or * null if there was no mapping for the key * @throws NullPointerException * if the specified key or value is null */ public V replace(K key, V value) { if (value == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).replace(key, hash, value); } /** * Removes all of the mappings from this map. */ public void clear() { for (int i = 0; i < segments.length; ++i) segments[i].clear(); } /** * Returns a {@link Set} view of the keys contained in this map. The set is * backed by the map, so changes to the map are reflected in the set, and * vice-versa. The set supports element removal, which removes the * corresponding mapping from this map, via the Iterator.remove, * Set.remove, removeAll, retainAll, and * clear operations. It does not support the add or * addAll operations. * *

* The view's iterator is a "weakly consistent" iterator that will * never throw {@link ConcurrentModificationException}, and guarantees to * traverse elements as they existed upon construction of the iterator, and * may (but is not guaranteed to) reflect any modifications subsequent to * construction. */ public Set keySet() { Set ks = keySet; return (ks != null) ? ks : (keySet = new KeySet()); } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are reflected * in the collection, and vice-versa. The collection supports element * removal, which removes the corresponding mapping from this map, via the * Iterator.remove, Collection.remove, removeAll, * retainAll, and clear operations. It does not support * the add or addAll operations. * *

* The view's iterator is a "weakly consistent" iterator that will * never throw {@link ConcurrentModificationException}, and guarantees to * traverse elements as they existed upon construction of the iterator, and * may (but is not guaranteed to) reflect any modifications subsequent to * construction. */ public Collection values() { Collection vs = values; return (vs != null) ? vs : (values = new Values()); } /** * Returns a {@link Set} view of the mappings contained in this map. The set * is backed by the map, so changes to the map are reflected in the set, and * vice-versa. The set supports element removal, which removes the * corresponding mapping from the map, via the Iterator.remove, * Set.remove, removeAll, retainAll, and * clear operations. It does not support the add or * addAll operations. * *

* The view's iterator is a "weakly consistent" iterator that will * never throw {@link ConcurrentModificationException}, and guarantees to * traverse elements as they existed upon construction of the iterator, and * may (but is not guaranteed to) reflect any modifications subsequent to * construction. */ public Set> entrySet() { Set> es = entrySet; return (es != null) ? es : (entrySet = new EntrySet()); } /** * Returns an enumeration of the keys in this table. * * @return an enumeration of the keys in this table * @see #keySet() */ public Enumeration keys() { return new KeyIterator(); } /** * Returns an enumeration of the values in this table. * * @return an enumeration of the values in this table * @see #values() */ public Enumeration elements() { return new ValueIterator(); } /* ---------------- Iterator Support -------------- */ abstract class HashIterator { int nextSegmentIndex; int nextTableIndex; HashEntry[] currentTable; HashEntry nextEntry; HashEntry lastReturned; HashIterator() { nextSegmentIndex = segments.length - 1; nextTableIndex = -1; advance(); } public boolean hasMoreElements() { return hasNext(); } final void advance() { if (nextEntry != null && (nextEntry = nextEntry.next) != null) return; while (nextTableIndex >= 0) { if ((nextEntry = currentTable[nextTableIndex--]) != null) return; } while (nextSegmentIndex >= 0) { Segment seg = segments[nextSegmentIndex--]; if (seg.count != 0) { currentTable = seg.table; for (int j = currentTable.length - 1; j >= 0; --j) { if ((nextEntry = currentTable[j]) != null) { nextTableIndex = j - 1; return; } } } } } public boolean hasNext() { return nextEntry != null; } HashEntry nextEntry() { if (nextEntry == null) throw new NoSuchElementException(); lastReturned = nextEntry; advance(); return lastReturned; } public void remove() { if (lastReturned == null) throw new IllegalStateException(); ConcurrentLRUHashMap.this.remove(lastReturned.key); lastReturned = null; } } final class KeyIterator extends HashIterator implements Iterator, Enumeration { public K next() { return super.nextEntry().key; } public K nextElement() { return super.nextEntry().key; } } final class ValueIterator extends HashIterator implements Iterator, Enumeration { public V next() { return super.nextEntry().value; } public V nextElement() { return super.nextEntry().value; } } /** * Custom Entry class used by EntryIterator.next(), that relays setValue * changes to the underlying map. */ final class WriteThroughEntry extends AbstractMap.SimpleEntry { /** * */ private static final long serialVersionUID = -2545938966452012894L; WriteThroughEntry(K k, V v) { super(k, v); } /** * Set our entry's value and write through to the map. The value to * return is somewhat arbitrary here. Since a WriteThroughEntry does not * necessarily track asynchronous changes, the most recent "previous" * value could be different from what we return (or could even have been * removed in which case the put will re-establish). We do not and * cannot guarantee more. */ public V setValue(V value) { if (value == null) throw new NullPointerException(); V v = super.setValue(value); ConcurrentLRUHashMap.this.put(getKey(), value); return v; } } final class EntryIterator extends HashIterator implements Iterator> { public Map.Entry next() { HashEntry e = super.nextEntry(); return new WriteThroughEntry(e.key, e.value); } } final class KeySet extends AbstractSet { public Iterator iterator() { return new KeyIterator(); } public int size() { return ConcurrentLRUHashMap.this.size(); } public boolean contains(Object o) { return ConcurrentLRUHashMap.this.containsKey(o); } public boolean remove(Object o) { return ConcurrentLRUHashMap.this.remove(o) != null; } public void clear() { ConcurrentLRUHashMap.this.clear(); } } final class Values extends AbstractCollection { public Iterator iterator() { return new ValueIterator(); } public int size() { return ConcurrentLRUHashMap.this.size(); } public boolean contains(Object o) { return ConcurrentLRUHashMap.this.containsValue(o); } public void clear() { ConcurrentLRUHashMap.this.clear(); } } final class EntrySet extends AbstractSet> { public Iterator> iterator() { return new EntryIterator(); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry) o; V v = ConcurrentLRUHashMap.this.get(e.getKey()); return v != null && v.equals(e.getValue()); } public boolean remove(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry) o; return ConcurrentLRUHashMap.this.remove(e.getKey(), e.getValue()); } public int size() { return ConcurrentLRUHashMap.this.size(); } public void clear() { ConcurrentLRUHashMap.this.clear(); } } /* ---------------- Serialization Support -------------- */ /** * Save the state of the ConcurrentHashMap instance to a stream * (i.e., serialize it). * * @param s * the stream * @serialData the key (Object) and value (Object) for each key-value * mapping, followed by a null pair. The key-value mappings are * emitted in no particular order. */ private void writeObject(java.io.ObjectOutputStream s) throws IOException { s.defaultWriteObject(); for (int k = 0; k < segments.length; ++k) { Segment seg = segments[k]; seg.lock(); try { HashEntry[] tab = seg.table; for (int i = 0; i < tab.length; ++i) { for (HashEntry e = tab[i]; e != null; e = e.next) { s.writeObject(e.key); s.writeObject(e.value); } } } finally { seg.unlock(); } } s.writeObject(null); s.writeObject(null); } /** * Reconstitute the ConcurrentHashMap instance from a stream (i.e., * deserialize it). * * @param s * the stream */ @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { s.defaultReadObject(); // Initialize each segment to be minimally sized, and let grow. for (int i = 0; i < segments.length; ++i) { segments[i].setTable(new HashEntry[1]); } // Read the keys and values, and put the mappings in the table for (;;) { K key = (K) s.readObject(); V value = (V) s.readObject(); if (key == null) break; put(key, value); } } }



你可能感兴趣的:(预研)