这篇博文讲介绍如何一步步构建一个基于Redis的分布式锁。会从最原始的版本开始,然后根据问题进行调整,最后完成一个较为合理的分布式锁。
本篇文章会将分布式锁的实现分为两部分,一个是单机环境,另一个是集群环境下的Redis锁实现。在介绍分布式锁的实现之前,先来了解下分布式锁的一些信息。
分布式锁是控制分布式系统或不同系统之间共同访问共享资源的一种锁实现,如果不同的系统或同一个系统的不同主机之间共享了某个资源时,往往需要互斥来防止彼此干扰来保证一致性。
public class LockConstants {
public static final String OK = "OK";
/** NX|XX, NX -- Only set the key if it does not already exist. XX -- Only set the key if it already exist. **/
public static final String NOT_EXIST = "NX";
public static final String EXIST = "XX";
/** expx EX|PX, expire time units: EX = seconds; PX = milliseconds **/
public static final String SECONDS = "EX";
public static final String MILLISECONDS = "PX";
private LockConstants() {}
}
抽象类RedisLock实现java.util.concurrent包下的Lock接口,然后对一些方法提供默认实现,子类只需实现lock方法和unlock方法即可。代码如下
public abstract class RedisLock implements Lock {
protected Jedis jedis;
protected String lockKey;
public RedisLock(Jedis jedis,String lockKey) {
this(jedis, lockKey);
}
public void sleepBySencond(int sencond){
try {
Thread.sleep(sencond*1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
@Override
public void lockInterruptibly(){}
@Override
public Condition newCondition() {
return null;
}
@Override
public boolean tryLock() {
return false;
}
@Override
public boolean tryLock(long time, TimeUnit unit){
return false;
}
}
先来一个最基础的版本,代码如下
public class LockCase1 extends RedisLock {
public LockCase1(Jedis jedis, String name) {
super(jedis, name);
}
@Override
public void lock() {
while(true){
String result = jedis.set(lockKey, "value", NOT_EXIST);
if(OK.equals(result)){
System.out.println(Thread.currentThread().getId()+"加锁成功!");
break;
}
}
}
@Override
public void unlock() {
jedis.del(lockKey);
}
}
LockCase1类提供了lock和unlock方法。
其中lock方法也就是在reids客户端执行如下命令
SET lockKey value NX
而unlock方法就是调用DEL命令将键删除。
好了,方法介绍完了。现在来想想这其中会有什么问题?
假设有两个客户端A和B,A获取到分布式的锁。A执行了一会,突然A所在的服务器断电了(或者其他什么的),也就是客户端A挂了。这时出现一个问题,这个锁一直存在,且不会被释放,其他客户端永远获取不到锁。如下示意图
可以通过设置过期时间来解决这个问题
public void lock() {
while(true){
String result = jedis.set(lockKey, "value", NOT_EXIST,SECONDS,30);
if(OK.equals(result)){
System.out.println(Thread.currentThread().getId()+"加锁成功!");
break;
}
}
}
类似的Redis命令如下
SET lockKey value NX EX 30
注:要保证设置过期时间和设置锁具有原子性
这时又出现一个问题,问题出现的步骤如下
示意图如下
这时会有两个问题
先来解决如何保证锁不会被误删除这个问题。
这个问题可以通过设置value为当前客户端生成的一个随机字符串,且保证在足够长的一段时间内在所有客户端的所有获取锁的请求中都是唯一的。
版本2的完整代码:Github地址
抽象类RedisLock增加lockValue字段,lockValue字段的默认值为UUID随机值假设当前线程ID。
public abstract class RedisLock implements Lock {
//...
protected String lockValue;
public RedisLock(Jedis jedis,String lockKey) {
this(jedis, lockKey, UUID.randomUUID().toString()+Thread.currentThread().getId());
}
public RedisLock(Jedis jedis, String lockKey, String lockValue) {
this.jedis = jedis;
this.lockKey = lockKey;
this.lockValue = lockValue;
}
//...
}
加锁代码
public void lock() {
while(true){
String result = jedis.set(lockKey, lockValue, NOT_EXIST,SECONDS,30);
if(OK.equals(result)){
System.out.println(Thread.currentThread().getId()+"加锁成功!");
break;
}
}
}
解锁代码
public void unlock() {
String lockValue = jedis.get(lockKey);
if (lockValue.equals(lockValue)){
jedis.del(lockKey);
}
}
这时看看加锁代码,好像没有什么问题啊。
再来看看解锁的代码,这里的解锁操作包含三步操作:获取值、判断和删除锁。这时你有没有想到在多线程环境下的i++
操作?
i++
操作也可分为三个步骤:读i的值,进行i+1,设置i的值。
如果两个线程同时对i进行i++操作,会出现如下情况
在多线程环境下有什么方式可以避免这类情况发生?
解决方式有很多种,例如用AtomicInteger、CAS、synchronized等等。
这些解决方式的目的都是要确保i++
操作的原子性。那么回过头来看看解锁,同理我们也是要确保解锁的原子性。我们可以利用Redis的lua脚本来实现解锁操作的原子性。
版本3的完整代码:Github地址
lua脚本内容如下
if redis.call("get",KEYS[1]) == ARGV[1] then
return redis.call("del",KEYS[1])
else
return 0
end
这段Lua脚本在执行的时候要把的lockValue作为ARGV[1]的值传进去,把lockKey作为KEYS[1]的值传进去。现在来看看解锁的java代码
public void unlock() {
// 使用lua脚本进行原子删除操作
String checkAndDelScript = "if redis.call('get', KEYS[1]) == ARGV[1] then " +
"return redis.call('del', KEYS[1]) " +
"else " +
"return 0 " +
"end";
jedis.eval(checkAndDelScript, 1, lockKey, lockValue);
}
好了,解锁操作也确保了原子性了,那么是不是单机Redis环境的分布式锁到此就完成了?
别忘了版本2-设置锁的过期时间还有一个,过期时间如何保证大于业务执行时间问题没有解决。
版本4的完整代码:Github地址
抽象类RedisLock增加一个boolean类型的属性isOpenExpirationRenewal,用来标识是否开启定时刷新过期时间。
在增加一个scheduleExpirationRenewal方法用于开启刷新过期时间的线程。
public abstract class RedisLock implements Lock {
//...
protected volatile boolean isOpenExpirationRenewal = true;
/**
* 开启定时刷新
*/
protected void scheduleExpirationRenewal(){
Thread renewalThread = new Thread(new ExpirationRenewal());
renewalThread.start();
}
/**
* 刷新key的过期时间
*/
private class ExpirationRenewal implements Runnable{
@Override
public void run() {
while (isOpenExpirationRenewal){
System.out.println("执行延迟失效时间中...");
String checkAndExpireScript = "if redis.call('get', KEYS[1]) == ARGV[1] then " +
"return redis.call('expire',KEYS[1],ARGV[2]) " +
"else " +
"return 0 end";
jedis.eval(checkAndExpireScript, 1, lockKey, lockValue, "30");
//休眠10秒
sleepBySencond(10);
}
}
}
}
加锁代码在获取锁成功后将isOpenExpirationRenewal置为true,并且调用scheduleExpirationRenewal方法,开启刷新过期时间的线程。
public void lock() {
while (true) {
String result = jedis.set(lockKey, lockValue, NOT_EXIST, SECONDS, 30);
if (OK.equals(result)) {
System.out.println("线程id:"+Thread.currentThread().getId() + "加锁成功!时间:"+LocalTime.now());
//开启定时刷新过期时间
isOpenExpirationRenewal = true;
scheduleExpirationRenewal();
break;
}
System.out.println("线程id:"+Thread.currentThread().getId() + "获取锁失败,休眠10秒!时间:"+LocalTime.now());
//休眠10秒
sleepBySencond(10);
}
}
解锁代码增加一行代码,将isOpenExpirationRenewal属性置为false,停止刷新过期时间的线程轮询。
public void unlock() {
//...
isOpenExpirationRenewal = false;
}
版本5的完整代码:Github地址
测试代码如下
public void testLockCase5() {
//定义线程池
ThreadPoolExecutor pool = new ThreadPoolExecutor(0, 10,
1, TimeUnit.SECONDS,
new SynchronousQueue<>());
//添加10个线程获取锁
for (int i = 0; i < 10; i++) {
pool.submit(() -> {
try {
Jedis jedis = new Jedis("localhost");
LockCase5 lock = new LockCase5(jedis, lockName);
lock.lock();
//模拟业务执行15秒
lock.sleepBySencond(15);
lock.unlock();
} catch (Exception e){
e.printStackTrace();
}
});
}
//当线程池中的线程数为0时,退出
while (pool.getPoolSize() != 0) {}
}
测试结果
或许到这里基于单机Redis环境的分布式就介绍完了。但是使用java的同学有没有发现一个锁的重要特性
那就是锁的重入,那么分布式锁的重入该如何实现呢?这里就留一个坑了
在Redis的分布式环境中,Redis 的作者提供了RedLock 的算法来实现一个分布式锁。
RedLock算法加锁步骤如下
向所有的Redis实例发送释放锁命令即可,不用关心之前有没有从Redis实例成功获取到锁.
关于RedLock算法,还有一个小插曲,就是Martin Kleppmann 和 RedLock 作者 antirez的对RedLock算法的互怼。 官网原话如下
Martin Kleppmann analyzed Redlock here. I disagree with the analysis and posted my reply to his analysis here.
更多关于RedLock算法这里就不在说明,有兴趣的可以到官网阅读相关文章。
这篇文章讲述了一个基于Redis的分布式锁的编写过程及解决问题的思路,但是本篇文章实现的分布式锁并不适合用于生产环境。java环境有 Redisson 可用于生产环境,但是分布式锁还是Zookeeper会比较好一些(可以看Martin Kleppmann 和 RedLock的分析)。