Spark1.6-----源码解读之BlockManagerMaster对BlockManager的管理

Driver的BlockManagerMaster对存在与Executor上的BlockManager统一管理。比如Executor需要向Driver发送注册BlockManager,更新Executor上Block的最新信息。但是Driver和Executor存在与不同的机器上,通过spark消息系统进行消息传递的。Driver的BlockManager会持有BlockManagerMasterEndpoint的引用,所有的Executor也会获得它的引用。通过BlockManagerMasterEndpoint来进行消息的传递

在SparkEnv 359行创建BlockManager:

    val blockManagerMaster = new BlockManagerMaster(registerOrLookupEndpoint(
      BlockManagerMaster.DRIVER_ENDPOINT_NAME,
      new BlockManagerMasterEndpoint(rpcEnv, isLocal, conf, listenerBus)),
      conf, isDriver)

BlockManagerMasterEndpoint的实现 BlockManagerMasterEndpoint 45行:

 //缓存了所有的BlockManagerId及其BlockManager的信息
  private val blockManagerInfo = new mutable.HashMap[BlockManagerId, BlockManagerInfo]

  //缓存executor ID到 block manager ID.的映射信息
  private val blockManagerIdByExecutor = new mutable.HashMap[String, BlockManagerId]

  // 缓存BlockId和BlockManager的映射信息
  private val blockLocations = new JHashMap[BlockId, mutable.HashSet[BlockManagerId]]

receiveAndReply偏函数就是处理的事件

 // Mapping from block manager id to the block manager's information.
  private val blockManagerInfo = new mutable.HashMap[BlockManagerId, BlockManagerInfo]

  // Mapping from executor ID to block manager ID.
  private val blockManagerIdByExecutor = new mutable.HashMap[String, BlockManagerId]

  // Mapping from block id to the set of block managers that have the block.
  private val blockLocations = new JHashMap[BlockId, mutable.HashSet[BlockManagerId]]

  private val askThreadPool = ThreadUtils.newDaemonCachedThreadPool("block-manager-ask-thread-pool")
  private implicit val askExecutionContext = ExecutionContext.fromExecutorService(askThreadPool)

  override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
    case RegisterBlockManager(blockManagerId, maxMemSize, slaveEndpoint) =>
      register(blockManagerId, maxMemSize, slaveEndpoint)
      context.reply(true)

    case _updateBlockInfo @ UpdateBlockInfo(
      blockManagerId, blockId, storageLevel, deserializedSize, size, externalBlockStoreSize) =>
      context.reply(updateBlockInfo(
        blockManagerId, blockId, storageLevel, deserializedSize, size, externalBlockStoreSize))
      listenerBus.post(SparkListenerBlockUpdated(BlockUpdatedInfo(_updateBlockInfo)))

    case GetLocations(blockId) =>
      context.reply(getLocations(blockId))

    case GetLocationsMultipleBlockIds(blockIds) =>
      context.reply(getLocationsMultipleBlockIds(blockIds))

    case GetPeers(blockManagerId) =>
      context.reply(getPeers(blockManagerId))

    case GetExecutorEndpointRef(executorId) =>
      context.reply(getExecutorEndpointRef(executorId))

    case GetMemoryStatus =>
      context.reply(memoryStatus)

    case GetStorageStatus =>
      context.reply(storageStatus)

    case GetBlockStatus(blockId, askSlaves) =>
      context.reply(blockStatus(blockId, askSlaves))

    case GetMatchingBlockIds(filter, askSlaves) =>
      context.reply(getMatchingBlockIds(filter, askSlaves))

    case RemoveRdd(rddId) =>
      context.reply(removeRdd(rddId))

    case RemoveShuffle(shuffleId) =>
      context.reply(removeShuffle(shuffleId))

    case RemoveBroadcast(broadcastId, removeFromDriver) =>
      context.reply(removeBroadcast(broadcastId, removeFromDriver))

    case RemoveBlock(blockId) =>
      removeBlockFromWorkers(blockId)
      context.reply(true)

    case RemoveExecutor(execId) =>
      removeExecutor(execId)
      context.reply(true)

    case StopBlockManagerMaster =>
      context.reply(true)
      stop()

    case BlockManagerHeartbeat(blockManagerId) =>
      context.reply(heartbeatReceived(blockManagerId))

    case HasCachedBlocks(executorId) =>
      blockManagerIdByExecutor.get(executorId) match {
        case Some(bm) =>
          if (blockManagerInfo.contains(bm)) {
            val bmInfo = blockManagerInfo(bm)
            context.reply(bmInfo.cachedBlocks.nonEmpty)
          } else {
            context.reply(false)
          }
        case None => context.reply(false)
      }
  }

询问Driver并获取回复的方法。

所有的交互最终都是调用了BlockManagerMasterEndpoint.askWithRetry方法,可见它是非常基础的一个方法了。

/**  发送消息给对应的RpcEndPoint这里肯定就是BlockManagerMasterEndpoint 并且获得结果
   * Send a message to the corresponding [[RpcEndpoint]] and get its result within a default
   * timeout, or throw a SparkException if this fails even after the default number of retries.
   * The default `timeout` will be used in every trial of calling `sendWithReply`. Because this
   * method retries, the message handling in the receiver side should be idempotent.
   *
   * Note: this is a blocking action which may cost a lot of time,  so don't call it in a message
   * loop of [[RpcEndpoint]].
   *
   * @param message the message to send
   * @tparam T type of the reply message
   * @return the reply message from the corresponding [[RpcEndpoint]]
   */
  def askWithRetry[T: ClassTag](message: Any): T = askWithRetry(message, defaultAskTimeout)

向BlockManagerMaster注册BlockManagerId

Executor和Driver自身的BlockManager初始化时都会想BlockManager注册自身的信息

BolckManager 190行:

  master.registerBlockManager(blockManagerId, maxMemory, slaveEndpoint)

BlockManagerMaster 45行registerBlockManager实现:

可以看出将发送RegisterBlockManager消息给BlockManagerMasterEndPoint,进行注册。

  /** Register the BlockManager's id with the driver. */
  def registerBlockManager(
      blockManagerId: BlockManagerId, maxMemSize: Long, slaveEndpoint: RpcEndpointRef): Unit = {
    logInfo("Trying to register BlockManager")
    tell(RegisterBlockManager(blockManagerId, maxMemSize, slaveEndpoint))
    logInfo("Registered BlockManager")
  }

此为tell方法:

也是调用了askWithRetry方法

  private def tell(message: Any) {
    if (!driverEndpoint.askWithRetry[Boolean](message)) {
      throw new SparkException("BlockManagerMasterEndpoint returned false, expected true.")
    }
  }

 

 

 

 

 

你可能感兴趣的:(spark)