运用神经网络完成机器翻译。使用英语和法语语句组成的数据集,训练一个序列到序列模型(sequence to sequence model),该模型能够将新的英语句子翻译成法语。
import helper
import problem_unittests as tests
source_path = './data/small_vocab_en'
target_path = './data/small_vocab_fr'
source_text = helper.load_data(source_path)
target_text = helper.load_data(target_path)
view_sentence_range = (0, 10)
import numpy as np
print('Dataset Stats')
print('Roughly the number of unique words: {}'.format(len({word: None for word in source_text.split()})))
sentences = source_text.split('\n')
word_counts = [len(sentence.split()) for sentence in sentences]
print('Number of sentences: {}'.format(len(sentences)))
print('Average number of words in a sentence: {}'.format(np.average(word_counts)))
print()
print('English sentences {} to {}:'.format(*view_sentence_range))
print('\n'.join(source_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]]))
print()
print('French sentences {} to {}:'.format(*view_sentence_range))
print('\n'.join(target_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]]))
首先将文本转换为数字。在函数 text_to_ids() 中,请将单词中的 source_text 和 target_text 转为 id。注意:需要在 target_text 中每个句子的末尾,添加 单词 id。这样可以预测句子应该在什么地方结束。
通过以下代码获取 单词ID:
target_vocab_to_int[’’]
使用 source_vocab_to_int 和 target_vocab_to_int 获得其他单词 id。
def text_to_ids(source_text, target_text, source_vocab_to_int, target_vocab_to_int):
"""
Convert source and target text to proper word ids
:param source_text: String that contains all the source text.
:param target_text: String that contains all the target text.
:param source_vocab_to_int: Dictionary to go from the source words to an id
:param target_vocab_to_int: Dictionary to go from the target words to an id
:return: A tuple of lists (source_id_text, target_id_text)
"""
# 需要编程:
source_id_text = [[source_vocab_to_int.get(word,source_vocab_to_int['' ])
for word in line.split()]
for line in source_text.split('\n')]
target_id_text = [[target_vocab_to_int.get(word,source_vocab_to_int['' ])
for word in line.split()] + [target_vocab_to_int['' ]]
for line in target_text.split('\n')]
return (source_id_text, target_id_text)
tests.test_text_to_ids(text_to_ids)
运行下列代码单元,预处理所有数据,并保存到文件中
helper.preprocess_and_save_data(source_path, target_path, text_to_ids)
第一个检查点。重新启动记事本后,可以从这里继续。预处理的数据已保存到磁盘上。
import numpy as np
import helper
(source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess()
这一检查步骤,可以确保你使用的是正确版本的 TensorFlow,并且能够访问 GPU。
from distutils.version import LooseVersion
import warnings
import tensorflow as tf
# 检查TensorFlow版本
assert LooseVersion(tf.__version__) in [LooseVersion('1.0.0'), LooseVersion('1.0.1')], 'This project requires TensorFlow version 1.0 You are using {}'.format(tf.__version__)
print('TensorFlow版本是: {}'.format(tf.__version__))
# 检查是否有GPU
if not tf.test.gpu_device_name():
warnings.warn('没有发现GPU,请使用GPU训练网络')
else:
print('默认GPU设备号: {}'.format(tf.test.gpu_device_name()))
实现 model_inputs() 函数,为神经网络创建 TF 占位符。如下:
a. 名为 “input” 的输入文本占位符,并使用 TF Placeholder 名称参数(数据维度为 2)
b. 目标占位符(数据维度为 2)
c. 学习速率占位符(数据维度为 0)
d. 名为 “keep_prob” 的保留率占位符,并使用 TF Placeholder 名称参数(数据维度为 0)
在以下元祖(tuple)中返回占位符:(输入、目标、学习速率、保留率)
def model_inputs():
"""
Create TF Placeholders for input, targets, and learning rate.
:return: Tuple (input, targets, learning rate, keep probability)
"""
#需要编程完成:
inputs=tf.placeholder(tf.int32,[None,None],name='input')
targets=tf.placeholder(tf.int32,[None,None])
learningrate=tf.placeholder(tf.float32)
keep_prob=tf.placeholder(tf.float32,name='keep_prob')
return inputs,targets,learningrate,keep_prob
tests.test_model_inputs(model_inputs)
使用 TensorFlow 实现 process_decoding_input,以便删掉 target_data 中每个批次的最后一个单词 ID,并将 GO ID 放到每个批次的开头。
def process_decoding_input(target_data, target_vocab_to_int, batch_size):
"""
Preprocess target data for dencoding
:param target_data: Target Placehoder
:param target_vocab_to_int: Dictionary to go from the target words to an id
:param batch_size: Batch Size
:return: Preprocessed target data
"""
# 需要编程:
ending=tf.strided_slice(target_data,[0,0],[batch_size,-1],[1,1])
#tf.fill(dims,value)创建维度=dims的tensor,并且以value值填充
#tf.concat(values,axis) values可以是一个List,沿着指定axis轴,连接values中的tensor
dec_input=tf.concat([tf.fill([batch_size,1],target_vocab_to_int['' ]),ending],1)
return dec_input
tests.test_process_decoding_input(process_decoding_input)
实现 encoding_layer(),以使用 tf.nn.dynamic_rnn() 创建编码器 RNN 层级。
def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob):
"""
Create encoding layer
:param rnn_inputs: Inputs for the RNN
:param rnn_size: RNN Size
:param num_layers: Number of layers
:param keep_prob: Dropout keep probability
:return: RNN state
"""
# 需要编程
def make_cell(rnn_size,keep_prob):
#tf.contrib.rnn.LSTMCell初始化LSTM单元参数,initializer=权重和投影矩阵的初始化器
enc_cell=tf.contrib.rnn.LSTMCell(rnn_size,initializer=tf.random_uniform_initializer(-0.1,0.1,seed=2))
drop=tf.contrib.rnn.DropoutWrapper(enc_cell,output_keep_prob=keep_prob)
return drop
#tf.contrib.rnn.MultiRNNCell(cells), cells( 有序的RNNcells列表 )
cell=tf.contrib.rnn.MultiRNNCell([make_cell(rnn_size,keep_prob) for _ in range(num_layers)])
_, enc_state = tf.nn.dynamic_rnn(cell, rnn_inputs, dtype=tf.float32)
return enc_state
tests.test_encoding_layer(encoding_layer)
def decoding_layer_train(encoder_state, dec_cell, dec_embed_input, sequence_length,
decoding_scope,output_fn, keep_prob):
"""
创建一个解码层用于训练(Create a decoding layer for training)
:param encoder_state: 编码状态 Encoder State
:param dec_cell: 解码RNN单元 Decoder RNN Cell
:param dec_embed_input: 解码嵌入输入 Decoder embedded input
:param sequence_length: 序列长度 Sequence Length
:param decoding_scope: 解码变量范围 TenorFlow Variable Scope for decoding
:param output_fn: 应用到输出层的函数 Function to apply the output layer
:param keep_prob: 丢弃的保留概率 Dropout keep probability
:return: Train Logits
"""
# 编程:
train_decoder=tf.contrib.seq2seq.simple_decoder_fn_train(encoder_state)
drop=tf.contrib.rnn.DropoutWrapper(dec_cell,output_keep_prob=keep_prob)
train_dec_output=tf.contrib.seq2seq.dynamic_rnn_decoder(cell=drop,
decoder_fn=train_decoder,
inputs=dec_embed_input,
sequence_length=sequence_length,
scope=decoding_scope)[0]
train_logits=output_fn(train_dec_output)
return train_logits
tests.test_decoding_layer_train(decoding_layer_train)
def decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id,
end_of_sequence_id,maximum_length, vocab_size,
decoding_scope, output_fn, keep_prob):
"""
创建推理解码层Create a decoding layer for inference
:param encoder_state: Encoder state
:param dec_cell: Decoder RNN Cell
:param dec_embeddings: 解码嵌入Decoder embeddings
:param start_of_sequence_id: GO ID
:param end_of_sequence_id: EOS Id
:param maximum_length: 解码最大允许时间步数The maximum allowed time steps to decode
:param vocab_size: 单词表大小Size of vocabulary
:param decoding_scope: TensorFlow Variable Scope for decoding
:param output_fn: Function to apply the output layer
:param keep_prob: Dropout keep probability
:return: Inference Logits
"""
# 编程
inference_decoder=tf.contrib.seq2seq.simple_decoder_fn_inference(output_fn,
encoder_state,
dec_embeddings,
start_of_sequence_id,
end_of_sequence_id,
maximum_length,
vocab_size)
#drop=tf.contrib.rnn.DropoutWrapper(dec_cell,output_keep_prob=keep_prob)
inference_decoder_output=tf.contrib.seq2seq.dynamic_rnn_decoder(cell=dec_cell,
decoder_fn=inference_decoder,
scope=decoding_scope)[0]
return inference_decoder_output
tests.test_decoding_layer_infer(decoding_layer_infer)
实现 decoding_layer() 以创建解码器 RNN 层级
a. 使用rnn_size 和 num_layers 创建解码 RNN 单元
b. 使用 lambda 创建输出函数,将输入,也就是分对数转换为类分对数(class logits)。注意是:将cell_output投影到class logits的函数。例如:tf.variable_scope(“decoder”) as varscope output_fn = lambda x: layers.linear(x, num_decoder_symbols,scope=varscope)
c. 使用 decoding_layer_train(encoder_state, dec_cell, dec_embed_input, sequence_length, decoding_scope, output_fn, keep_prob) 函数获取训练分对数
d. 使用 decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, maximum_length, vocab_size, decoding_scope, output_fn, keep_prob) 函数获取推论分对数
def decoding_layer(dec_embed_input, dec_embeddings, encoder_state, vocab_size,
sequence_length, rnn_size,num_layers,target_vocab_to_int, keep_prob):
"""
Create decoding layer
:param dec_embed_input: Decoder embedded input
:param dec_embeddings: Decoder embeddings
:param encoder_state: The encoded state
:param vocab_size: Size of vocabulary
:param sequence_length: Sequence Length
:param rnn_size: RNN Size
:param num_layers: Number of layers
:param target_vocab_to_int: Dictionary to go from the target words to an id
:param keep_prob: Dropout keep probability
:return: Tuple of (Training Logits, Inference Logits)
"""
# 需要编程:
def make_cell(rnn_size):
dec_cell = tf.contrib.rnn.LSTMCell(rnn_size,
initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=2))
return dec_cell
dec_cell = tf.contrib.rnn.MultiRNNCell([make_cell(rnn_size) for _ in range(num_layers)])
##fully_connected第三个参数为activation_fn=tf.nn.relu,设置为None
output_fn=lambda x: tf.contrib.layers.fully_connected(x, vocab_size, None,
scope=decoding_scope)
with tf.variable_scope("decoding") as decoding_scope:
train_decoder_output=decoding_layer_train(encoder_state, dec_cell,
dec_embed_input, sequence_length,
decoding_scope, output_fn, keep_prob)
with tf.variable_scope("decoding",reuse=True) as decoding_scope:
inference_decoder_output=decoding_layer_infer(encoder_state, dec_cell,
dec_embeddings,
target_vocab_to_int['' ],
target_vocab_to_int['' ],
sequence_length, vocab_size,
decoding_scope, output_fn,
keep_prob)
return train_decoder_output,inference_decoder_output
tests.test_decoding_layer(decoding_layer)
def seq2seq_model(input_data, target_data, keep_prob, batch_size, sequence_length,
source_vocab_size, target_vocab_size, enc_embedding_size,
dec_embedding_size, rnn_size, num_layers, target_vocab_to_int):
"""
Build the Sequence-to-Sequence part of the neural network
:param input_data: Input placeholder
:param target_data: Target placeholder
:param keep_prob: Dropout keep probability placeholder
:param batch_size: Batch Size
:param sequence_length: Sequence Length
:param source_vocab_size: Source vocabulary size
:param target_vocab_size: Target vocabulary size
:param enc_embedding_size: Decoder embedding size
:param dec_embedding_size: Encoder embedding size
:param rnn_size: RNN Size
:param num_layers: Number of layers
:param target_vocab_to_int: Dictionary to go from the target words to an id
:return: Tuple of (Training Logits, Inference Logits)
"""
# 需要编程
enc_embed_input = tf.contrib.layers.embed_sequence(input_data, source_vocab_size,
enc_embedding_size)
encoder_state=encoding_layer(enc_embed_input, rnn_size, num_layers, keep_prob)
dec_input=process_decoding_input(target_data, target_vocab_to_int, batch_size)
dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, dec_embedding_size]))
dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input)
train_logits,inference_logits=decoding_layer(dec_embed_input, dec_embeddings, encoder_state,target_vocab_size, sequence_length, rnn_size,
num_layers,target_vocab_to_int, keep_prob)
return train_logits,inference_logits
tests.test_seq2seq_model(seq2seq_model)
# 训练次数
epochs = 10
# Batch Size
batch_size = 256
# RNN Size
rnn_size = 128
# Number of Layers
num_layers = 2
# Embedding Size
encoding_embedding_size = 256
decoding_embedding_size = 256
# Learning Rate
learning_rate = 0.001
# 丢弃的 保留概率
keep_probability =0.7
使用你实现的神经网络构建图表
save_path = './data'
(source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess()
max_source_sentence_length = max([len(sentence) for sentence in source_int_text])
train_graph = tf.Graph()
with train_graph.as_default():
input_data, targets, lr, keep_prob = model_inputs()
sequence_length = tf.placeholder_with_default(max_source_sentence_length, None,
name='sequence_length')
input_shape = tf.shape(input_data)
train_logits, inference_logits = seq2seq_model(
tf.reverse(input_data, [-1]), targets, keep_prob, batch_size, sequence_length, len(source_vocab_to_int), len(target_vocab_to_int),
encoding_embedding_size, decoding_embedding_size, rnn_size, num_layers, target_vocab_to_int)
tf.identity(inference_logits, 'logits')
with tf.name_scope("optimization"):
# Loss function
cost = tf.contrib.seq2seq.sequence_loss(
train_logits,
targets,
tf.ones([input_shape[0], sequence_length]))
# Optimizer
optimizer = tf.train.AdamOptimizer(lr)
# Gradient Clipping
gradients = optimizer.compute_gradients(cost)
capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None]
train_op = optimizer.apply_gradients(capped_gradients)
利用预处理的数据训练神经网络
import time
def get_accuracy(target, logits):
"""
Calculate accuracy
"""
max_seq = max(target.shape[1], logits.shape[1])
if max_seq - target.shape[1]:
target = np.pad(
target,
[(0,0),(0,max_seq - target.shape[1])],
'constant')
if max_seq - logits.shape[1]:
logits = np.pad(
logits,
[(0,0),(0,max_seq - logits.shape[1]), (0,0)],
'constant')
return np.mean(np.equal(target, np.argmax(logits, 2)))
train_source = source_int_text[batch_size:]
train_target = target_int_text[batch_size:]
valid_source = helper.pad_sentence_batch(source_int_text[:batch_size])
valid_target = helper.pad_sentence_batch(target_int_text[:batch_size])
with tf.Session(graph=train_graph) as sess:
sess.run(tf.global_variables_initializer())
for epoch_i in range(epochs):
for batch_i, (source_batch, target_batch) in enumerate(
helper.batch_data(train_source, train_target, batch_size)):
start_time = time.time()
_, loss = sess.run(
[train_op, cost],
{input_data: source_batch,
targets: target_batch,
lr: learning_rate,
sequence_length: target_batch.shape[1],
keep_prob:keep_probability})
batch_train_logits = sess.run(
inference_logits,
{input_data: source_batch, keep_prob: 1.0})
batch_valid_logits = sess.run(
inference_logits,
{input_data: valid_source, keep_prob: 1.0})
train_acc = get_accuracy(target_batch, batch_train_logits)
valid_acc = get_accuracy(np.array(valid_target), batch_valid_logits)
end_time = time.time()
print('Epoch {:>3} Batch {:>4}/{} - Train Accuracy: {:>6.3f}, Validation Accuracy: {:>6.3f}, Loss: {:>6.3f}'
.format(epoch_i, batch_i, len(source_int_text) // batch_size, train_acc, valid_acc, loss))
# Save Model
saver = tf.train.Saver()
saver.save(sess, save_path)
print('Model Trained and Saved')
保存 batch_size 和 save_path 参数以进行推论(for inference)
# Save parameters for checkpoint
helper.save_params(save_path)
要向模型提供要翻译的句子,首先需要预处理该句子。实现函数 sentence_to_seq() 以预处理新的句子
def sentence_to_seq(sentence, vocab_to_int):
"""
Convert a sentence to a sequence of ids
:param sentence: String
:param vocab_to_int: Dictionary to go from the words to an id
:return: List of word ids
"""
# 需要编程
sentence_lower=sentence.lower()
word_ids=[vocab_to_int.get(word,vocab_to_int['' ])for word in sentence_lower.split()]
return word_ids
tests.test_sentence_to_seq(sentence_to_seq)
将 translate_sentence 从英语翻译成法语
translate_sentence = 'he saw a old yellow truck .'
translate_sentence = sentence_to_seq(translate_sentence, source_vocab_to_int)
loaded_graph = tf.Graph()
with tf.Session(graph=loaded_graph) as sess:
# Load saved model
loader = tf.train.import_meta_graph(load_path + '.meta')
loader.restore(sess, load_path)
input_data = loaded_graph.get_tensor_by_name('input:0')
logits = loaded_graph.get_tensor_by_name('logits:0')
keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
translate_logits = sess.run(logits, {input_data: [translate_sentence], keep_prob: 1.0})[0]
print('Input')
print(' Word Ids: {}'.format([i for i in translate_sentence]))
print(' English Words: {}'.format([source_int_to_vocab[i] for i in translate_sentence]))
print('\nPrediction')
print(' Word Ids: {}'.format([i for i in np.argmax(translate_logits, 1)]))
print(' French Words: {}'.format([target_int_to_vocab[i] for i in np.argmax(translate_logits, 1)]))