- 流行编程语言全解析:优势、应用与短板
a小胡哦
pythonjavac++c语言javascriptswiftr语言
Python:优势Python以其简洁、易读的语法闻名,新手能快速上手。丰富的库和框架,能极大地提高开发效率。适用领域数据科学与分析:处理和分析大规模数据集,进行数据可视化。典型示例:Google用Python进行数据分析,处理海量数据以支持各种业务决策。机器学习与人工智能:构建和训练模型。典型示例:OpenAI在很多人工智能项目中广泛使用Python,如GPT系列模型的研发。网络爬虫:轻松从网页
- 【自学笔记】机器学习基础知识点总览-持续更新
Long_poem
笔记机器学习人工智能
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录机器学习重点知识点总览一、机器学习基础概念二、机器学习理论基础三、机器学习算法1.监督学习2.无监督学习3.强化学习四、机器学习处理流程五、机器学习常见问题与解决方法六、机器学习应用领域总结机器学习重点知识点总览一、机器学习基础概念定义:机器学习是一种人工智能技术,通过对数据的学习和分析,让计算机系统自动提高其性能。本质:找到
- 解锁机器学习核心算法 | 逻辑回归:不是回归的“回归”
紫雾凌寒
AI炼金厂机器学习算法逻辑回归深度学习pythonscikit-learnmatplotlib
引言前面一篇文章我们介绍了机器学习算法中我们最先会接触到的算法——线性回归:机器学习的基石。今天我们继续学习机器学习中的另一个算法模型——逻辑回归(LogisticRegression)。一、逻辑回归:不是回归的“回归”在机器学习的庞大算法体系中,逻辑回归(LogisticRegression)虽然名字中带有“回归”,但却是一位不折不扣的“分类高手”,主要用于解决二分类问题,在众多领域发挥着关键作
- 【第11章:生成式AI与创意应用—11.2 音频与音乐生成的探索与实践】
再见孙悟空_
#【深度学习・探索智能核心奥秘】人工智能音视频自然语言处理NLP深度学习生成式AIDeepSeek
凌晨三点的录音棚里,制作人小林对着空荡荡的混音台抓狂——广告方临时要求将电子舞曲改编成巴洛克风格,还要保留"赛博朋克"元素。当他在AI音乐平台输入"维瓦尔弟遇见霓虹灯"的瞬间,一段融合羽管键琴与合成器的奇妙旋律喷涌而出,这场人与机器的音乐狂想曲正式拉开帷幕。一、声波炼金术:从物理建模到神经作曲1.1传统音频生成的三大门派在AI登场之前,音乐科技已经历三次革命:物理建模派(1980s):用微分方程模
- 单片机、嵌入式Linux开发大学自学路径
Oriental Son
嵌入式MCU单片机单片机学习stm32mculinux
笔者所修读的专业为物联网工程,物联网工程是一门新兴的、热门的专业,其所涉及的学科更是又多又杂,既有计算机方向的编程语言(如C、C++、Java、Python等)、数据结构与算法、操作系统、移动端应用开发、机器学习等;软硬结合的方向有数字电路单片机开发、嵌入式Linux开发等;硬件、电路方向有电路分析、数字电路、模拟电路、传感器原理、RFID、FPGA开发等;涉及信号处理的有信号与系统、通信原理等。
- 蓝桥杯备考:贪心算法之纪念品分组
无敌大饺子 1
贪心算法算法
P1094[NOIP2007普及组]纪念品分组-洛谷这道题我们的贪心策略就是每次找出最大的和最小的,如果他们加起来不超过我们给的值,就分成一组,如果超过了,就把大的单独成一组,小的待定#include#includetypedeflonglongLL;usingnamespacestd;LLw,n;constintN=3e4+10;LLa[N];intmain(){cin>>w>>n;for(in
- 提示工程(Prompt Engineering)的进阶策略与实践指南
调皮的芋头
prompt机器学习人工智能
深化与细化:提示工程(PromptEngineering)的进阶策略与实践指南一、结构化提示的黄金框架CRISPE框架(角色-约束-意图-风格-示例)适用于复杂技术场景,确保输出精准可控:[角色]你是一名有10年经验的Java架构师[约束]使用SpringSecurity6.0+,兼容JDK17[意图]实现支持JWT和OAuth2协议的用户鉴权模块[风格]代码符合GoogleJavaStyle,包
- 强化学习:原理、概念与代码实践
AndrewHZ
深度学习新浪潮人工智能深度学习强化学习机器学习算法deepseek
一、引言强化学习(ReinforcementLearning)作为机器学习的一个重要分支,旨在通过智能体(agent)与环境的交互,学习到最优的行为策略,以最大化长期累积奖励。它在机器人控制、游戏、自动驾驶、资源管理等众多领域都取得了显著的成功。本文将深入介绍强化学习的数学原理、核心概念,并通过公式推导来加深理解,同时结合一个具体的实例,使用Python语言进行代码实现,帮助读者全面掌握强化学习的
- 随机梯度下降一定会收敛么?
AndrewHZ
人工智能深度学习算法
1.什么是随机梯度下降?随机梯度下降(StochasticGradientDescent,SGD)是一种用于最小化目标函数的迭代优化算法,在机器学习和深度学习领域应用广泛。2.随机梯度下降算法的基本原理1.基于梯度的优化基础该算法是基于梯度的优化算法,用于寻找函数的最优解,通常是最小化损失函数。在机器学习和深度学习中,模型通过调整参数来最小化损失函数,以达到最佳的预测性能。2.迭代更新参数从初始的
- 《Ollama 与 DeepSeek 整合应用入门指南》一、二、三章
Allen-Steven
ollamadeepseek
第一章:工具概述与核心价值1.1Ollama技术解析本地化部署优势:无需网络连接的数据隐私保护跨平台架构设计:支持Windows/macOS/Linux全平台模型管理引擎:自动化处理模型依赖与版本控制1.2DeepSeek模型特性多模态处理能力:文本生成、代码理解、数学推理中文优化架构:针对中文语料的特殊训练策略模型家族图谱:从1.3B到67B的参数规模选择1.3技术整合价值本地智能计算:企业数据
- 知识管理成功:关键指标和策略,研究信息的投资回报率
清风徐徐de来
其他
信息过载会影响生产力。没有人工智能的帮助,信息过载会影响生产力。大量的可用信息,知识工作者不仅仅是超负荷工作;他们感到不知所措,他们倾向于浪费时间(和脑细胞)来应付他们被大量的数据抛向他们,挣扎着试图筛选出重要的信息数据来自一堆不重要和重复的数据。这是一场失败的战斗。计算投资回报率(ROI)是一个公认的商业方法ROI是一种用于确定可行性的方法一项新事业或对既定流程的重大改变。从本质上讲,投资回报率
- 安全面试1
白初&
面试题目总结安全面试网络
目录渗透的流程信息收集如何处理子域名爆破的泛解析问题泛解析判断泛解析的存在处理泛解析的策略如何绕过CDN查找真实ipphpinfo中常见的敏感信息权限维持Windows权限维持Linux权限维持技术跨平台权限维持技术检测和防御输出到href的XSS如何防御samesite防御CSRF的原理SameSite的工作原理CSRF防御json格式的CSRF如何防御浏览器解析顺序和解码顺序解析顺序解码顺序过
- 大规模GPU集群的进阶之路
卢旗
人工智能
大家好,我是卢旗。今天来聊聊GPU。GPU,全称GraphicProcessingUnit,即图形处理器。它的并行处理能力非常强大,能够同时处理多个任务和数据,因此被广泛用于图形渲染、视频处理、深度学习、科学计算等领域。研发团队在负责制定硬件选型策略并设计优化下一代大规模GPU集群的软硬件架构时,我们需要关注GPU技术的最新进展、重点研究问题以及潜在的技术突破。一、GPU在重点研究的问题算力提升与
- 【Python】成功解决NameError: name ‘XXX’ is not defined
云天徽上
python运行报错解决记录python开发语言pandas机器学习numpy
【Python】成功解决NameError:name‘XXX’isnotdefined欢迎莅临我的个人主页这里是我深耕Python编程、机器学习和自然语言处理(NLP)领域,并乐于分享知识与经验的小天地!博主简介:我是云天徽上,一名对技术充满热情的探索者。多年的Python编程和机器学习实践,使我深入理解了这些技术的核心原理,并能够在实际项目中灵活应用。尤其是在NLP领域,我积累了丰富的经验,能够
- python量化交易策略实例_Day 80 量化投资与Python——项目案例
weixin_39964660
python量化交易策略实例
数据分析项目案例股票分析小结:需求:使用tushare包获取某股票的历史行情数据。输出该股票所有收盘比开盘上涨3%以上的日期。输出该股票所有开盘比前日收盘跌幅超过2%的日期。#需求四:假如我从2010年1月1日开始,每月第一个交易日买入1手股票,每年最后一个交易日卖出所有股票,到今天为止,我的收益如何?需求一:使用tushare包获取某股票的历史行情数据。#获取行情df=ts.get_k_data
- 后端变现+AB测试双赢攻略,如何让收入不受影响?
大家好,我是阿联。在优化移动广告变现的过程中,我们常常遇到一个老问题:如何快速测试不同的广告配置,同时避免影响收入。尤其是对像MAX、AdMob这样的广告平台,虽然它们支持AB测试,但往往效果慢且灵活性差。尤其在获取结果时,不仅周期长,而且往往会有一定的收入损失。传统的AB测试需要一定的时间来收集数据和评估效果,但这对于需要快速迭代的广告变现优化来说显然不够高效。那么,有没有一种既能保持快速测试,
- Hyperparameter Tuning 原理与代码实战案例讲解
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
HyperparameterTuning原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:超参数调优,模型选择,性能提升,代码实战1.背景介绍1.1问题的由来在机器学习中,模型的选择和调优是至关重要的。模型选择涉及选择合适的算法和架构,而调优则集中在优化模型参数以提升性能。然而,模型参数众多,且每个参数的取值范围可能很广,
- Python 算法交易秘籍(五)
绝不原创的飞龙
默认分类默认分类
原文:zh.annas-archive.org/md5/010eca9c9f84c67fe4f8eb1d9bd1d316译者:飞龙协议:CCBY-NC-SA4.0第十一章:算法交易-实际交易现在我们已经建立了各种算法交易策略,并成功地进行了令人满意的回测,并在实时市场中进行了纸上交易,现在终于到了进行实际交易的时候了。实际交易是指我们在真实市场小时内用真钱执行交易策略。如果您的策略在回测和纸上交易
- 如何在Python上安装xgboost?
cda2024
python开发语言
在数据科学和机器学习领域,XGBoost无疑是一款备受推崇的算法工具。它以其高效、灵活和精确的特点,成为了众多数据科学家和工程师的首选。然而,对于初学者来说,如何在Python环境中成功安装XGBoost可能会成为一个挑战。本文将详细指导你在Python上安装XGBoost的过程,帮助你快速上手这一强大的机器学习工具。为什么选择XGBoost?在深入了解安装过程之前,我们先来看看XGBoost为何
- MICMIC-IV 个人查询策略(+官方查询语句注释)
医学AppMatrix
MIMIC数据库查询sql
MICMIC-IV查询策略(实际查询SQL例子注释)说明通过注释学习MIMIC官方的查询语句,总结MIMIC数据库的结构和查询特点。内容:SQL语言和mimic-iv数据库的结构目的:通过学习mimic数据库的数据格式,方便查询mimic数据库;学习mimic数据库的组织形式,也能够建立并查询自己的数据库概念和特点:本文的许多概念和对mimic数据库的认识来源于:[1]WangS,Mcdermot
- 基于eBPF的智能诊断平台:实现云原生系统的自愈型运维体系
桂月二二
云原生运维
引言:从被动运维到预测性自愈的进化当某电商平台通过eBPF实时诊断系统提前48小时预测到MySQL集群的锁竞争风暴时,其核心是千万级指标粒度的内核状态分析与AI驱动的根因定位算法的结合。运维数据显示,该平台将平均故障恢复时间(MTTR)从23分钟压缩到71秒,并自动修复了87%的异常事件。通过动态注入修复策略,集群CPU毛刺现象减少了94%,开创了智能运维的新纪元。一、传统可观测性工具的桎梏1.1
- 编程之外的财富:程序员必知的盈利策略
guzhoumingyue
AIpython
程序员找到稳定盈利的管道可以从以下几个方面入手:1.开发软件产品SaaS(软件即服务):开发并销售订阅制软件,如项目管理工具、CRM系统等。移动应用:开发并上架移动应用,通过广告、内购或付费下载盈利。桌面应用:开发桌面软件,通过一次性销售或订阅模式盈利。2.提供技术服务自由职业:在平台(如Upwork、Freelancer)上接单,提供编程、网站开发等服务。咨询与培训:为企业提供技术咨询或开设编程
- K-means聚类:解锁数据隐藏结构的钥匙
小村学长毕业设计
kmeans聚类机器学习
K-means聚类:解锁数据隐藏结构的钥匙在机器学习的广阔领域中,无监督学习以其独特的魅力吸引了众多研究者和实践者。其中,K-means聚类作为一种经典且实用的无监督学习算法,以其简单高效的特点,广泛应用于市场细分、图像分割和基因聚类等领域。本文将深入探讨K-means聚类的工作原理、应用实例及其在这些领域中的具体应用,旨在揭示其如何智能划分数据,解锁隐藏结构,为相关领域提供精准导航。一、K-me
- 机器学习基本库之Pandas
莫 名 其 妙
pandas机器学习python数据分析
Pandas是机器学习中专门用于数据处理的库,遇到很多数据时首先要使用Pandas进行预处理得到我们想要的信息,下面让我们来看一下Pandas中有哪些操作importpandasfood_info=pandas.read_csv("food_info.csv")#将csv文件中的数据进行读取print(type(food_info))#pandas中的核心结构叫做DATAFRAMEprint(fo
- 解剖DeepSeek四把刀,一场深到源码,大到行业,细到人心盛宴
leluckys
AI大模型AI编程
在拆解DeepSeek源码后,会发现几个颠覆行业认知的真相。这个号称“用十分之一算力吊打GPT-4”的国产大模型,藏着令人拍案叫绝的工程智慧,却也暗藏致命软肋。第一刀:切开开源表象,DeepSeek确实把代码仓库甩上了GitHub,但这套开源策略藏着精妙算计。他们公开的是经过蒸馏的“成品模型”,而非原始训练框架:就像给你组装好的乐高战舰,却藏起了设计图纸。这种半开放式开源既能吸引开发者构建生态,又
- 网络安全:挑战、技术与未来发展
一ge科研小菜鸡
运维网络运维
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言在数字化时代,网络安全(Cybersecurity)已成为全球关注的焦点。随着云计算、大数据、人工智能(AI)、物联网(IoT)等技术的发展,企业和个人的敏感数据在互联网上的流通日益增加,黑客攻击、数据泄露、勒索软件等网络安全威胁也日趋严峻。本文将从网络安全的核心概念、常见攻击手段、防御技术、企业安全策略以及未来发展趋势等方面,深入探讨如
- 带权重的最近任务安排算法(最近面试策略)
WePlayDirty
算法面试数据结构
一个任务j在sj开始,并在fj结束;并且每个任务都有权重。任务相容:任务安排的时间没有重叠目标:找到最大权重,且相容的任务安排#includeusingnamespacestd;typedefstruct{intiStartT;intiFinshT;intiWight;}TASK_INFO;intg_i=0;voidFindSolution(TASK_INFO*schedule,int**comp
- 【机器学习】半监督和无监督极限学习机SS-US-ELM附Matlab代码
默默科研仔
粉丝福利机器学习人工智能
标题:【机器学习】半监督和无监督极限学习机SS-US-ELM附Matlab代码一、引言1.1研究背景和意义概述研究的背景以及该研究在领域内的重要性。1.2研究现状分析当前领域的研究进展和存在的问题。二、极限学习机(ELM)基本原理2.1ELM的基本模型描述ELM的基本模型结构和工作原理。2.2ELM的学习过程介绍ELM的学习算法和训练过程。三、半监督极限学习机(SS-ELM)3.1SS-ELM的提
- 阅读论文“用于车联网安全车载通信的机器学习技术“的学习笔记
饮长安千年月
物联网安全安全机器学习学习
前言论文全称为MachineLearningTechnologiesforSecureVehicularCommunicationinInternetofVehicles:RecentAdvancescandApplications智能交通系统(ITS)和计算系统的快速发展为智能交通安全提供了新的科学研究,并提供了舒适和高效的解决方案。人工智能(AI)已被广泛用于优化不同研究领域的传统数据驱动方法
- 【AI引领潮流|未来智慧生活】国内机器聊天软件推荐(超全!)and人工智能&智能学习
熔光
人工智能AI软件智能学习生活
1.AI聊天软件概述1.1AI聊天软件的关键技术1.2AI聊天软件的应用1.3AI聊天软件的挑战1.4总结2.智普清言3.文心一言4.讯飞星火5.知元AI6.白马AI7.ChatGPT8.一览AI应用链接9.人工智能10.机器学习↓个人主页:C_GUIQU↑1.AI聊天软件概述AI聊天软件是一种利用自然语言处理(NLP)、自然语言理解(NLU)和机器学习(ML)技术构建的软件,它能够理解用户的自然
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。