- 景联文科技数据处理平台:支持高质量图像标注服务
景联文科技
人工智能科技计算机视觉
图像标注是计算机视觉领域中不可或缺的一环,它通过为图像添加标签来帮助机器学习算法理解图像内容。这一过程对于创建高质量的训练数据集至关重要,使得AI模型能够准确地识别和分类现实世界中的物体。常见的图像标注类型:边界框标注:这是最常用的标注方式之一,通常用于物体检测任务。通过绘制矩形框来确定图像中目标物体的位置,可以是二维或三维形式。分割标注:包括语义分割(同一类别的所有实例被视为整体)和实例分割(每
- Python实战:解析labelme标注数据——如何将数据转换为COCO格式
程序员杨弋
Python全栈工程师学习指南python开发语言
在计算机视觉中,标注数据是非常重要的,而Labelme是一个简单易用的自由标注工具,被广泛应用于图像语义分割、目标检测、实例分割等领域,然而标注数据并不总是以我们需要的格式存在,因此需要进行适当的转换,本文将详细介绍如何将Labelme标注数据转换为COCO格式。首先需要安装相关的Python库,包括labelme、numpy、matplotlib、pillow等,在安装完成后设置数据路径,并读取
- 计算机视觉四大任务模型汇总
Zero_one_ws
《神经网络与深度学习》理论计算机视觉人工智能深度学习图像分类图像目标检测目标分割关键点检测
计算机视觉中有四大核心任务:1-分类任务、2-目标检测任务、3-目标分割任务和4-关键点检测任务文章1:一文读懂计算机视觉4大任务文章2:图像的目标分割任务:语义分割和实例分割不同任务之间相关但不完全相同,因此不同的任务最好选择相应的模型,话不多说,看表:(注:表中github链接并不一定是模型的正式版本,只是本文用于展示模型的网络结构和应用)1-分类任务模型序号模型ipynb模型的github链
- python工具方法 19 语义分割结果转labelme标注(可用于大图裁剪)
万里鹏程转瞬至
python工具方法labelme语义分割opencvpng转labelme标注
将语义分割结果进行转换为labelme标注后,可用再次进行调整,然后重新生成标注数据。此外,对于一些实例分割的coco数据,也可以将img和mask裁剪成小图后,重新利用这份代码重新生成标签绘图,然后再转coco数据。语义分割结果转labelme标注,本质上是利用opencv的多边形拟合功能,在进行拟合时发现对于中空图形的孔洞区域会拟合出背景区域的多边形,因此需要对背景区域进行计算区分,此代码生成
- 【果树农药喷洒机器人】Part5:实例分割模型训练与试验分析
嵌小超
AIoT项目实战机器学习机器人人工智能
:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】:文章若有幸对你有帮助,可点赞收藏⭐不迷路:内容若有错误,敬请留言指正!原创文,转载请注明出处文章目录一、试验环境二、模型训练三、试验结果与分析3.1模型结构优化的有效性分析3.2与其他实例分割模型的比较分析总结一、试验环境本章试验在Wind
- 【Windows/C++/yolo开发部署03】将实例分割模型ONNX导出为 TensorRT 引擎:完整记录
认识祂
CV计算机视觉Ultralyticsyolo实例分割模型部署
【完整项目下载地址】:【TensorRT部署YOLO项目:实例分割+目标检测】+【C++和python两种方式】+【支持linux和windows】资源-CSDN文库目录写在前面环境准备1.使用trtexec将ONNX模型转换为TensorRT引擎2.验证TensorRT引擎2.1TensorRT版本2.2GPU信息2.3TensorRT引擎信息2.4推理请求2.5推理性能2.6警告信息2.7其他
- 【保姆级教程】YOLOv8_Seg实例分割:训练自己的数据集
BILLY BILLY
YOLOv8系列语义分割YOLO人工智能
一、YOLOV8环境准备1.1下载安装最新的YOLOv8代码仓库地址:https://github.com/ultralytics/ultralytics1.2配置环境pipinstall-rrequirements.txt-ihttps://pypi
- yolov5 实例分割:从原理、构建数据集到训练部署
外卖猿
AI实战yolov5实例分割c++部署opencv自定义数据集
yolov5实例分割:从原理、构建数据集到训练部署1.模型介绍1.1YOLOv5结构1.2YOLOv5推理时间2.构建数据集2.1使用labelme标注数据集2.2生成coco格式label2.3coco格式转yolo格式3.训练3.1整理数据集3.2修改配置文件3.3执行代码进行训练4.使用OpenCV进行c++部署5.使用openvino进行c++部署参考文献1.模型介绍1.1YOLOv5结构
- 基于深度学习的物体分割技术:从理论到实践
人工智能_SYBH
深度学习人工智能神经网络机器学习lstm
1.引言物体分割(ObjectSegmentation)是计算机视觉中的一项核心任务,其目标是将图像中的不同物体或区域分离出来,通常分为语义分割和实例分割两种类型。随着深度学习的迅猛发展,尤其是卷积神经网络(CNN)的应用,物体分割技术已取得了显著的进展。它被广泛应用于医学影像分析、自动驾驶、视频监控、机器人感知等领域。在本篇博客中,我们将深入探讨基于深度学习的物体分割技术,介绍其发展历程、核心原
- ultralytics 是什么?
博刻
AI学习笔记python
ultralytics是一个用于计算机视觉任务的Python库,专注于提供高效、易用的目标检测、实例分割和图像分类工具。它最著名的功能是实现YOLO(YouOnlyLookOnce)系列模型,特别是最新的YOLOv8。1.YOLO是什么?YOLO是一种流行的目标检测算法,以其速度快和精度高而闻名。YOLO的核心思想是将目标检测问题转化为一个回归问题,直接预测目标的边界框和类别。YOLOv8是YOL
- 【YOLOV8】目标检测任务中应该如何选择YOLOV8n/s/m/l/x模型及输入尺寸大小
小小小小祥
YOLO目标检测人工智能
问题描述:YOLOV8作为目前主流的深度学习网络,支持图像分类、目标检测、实例分割、姿态检测、旋转目标检测等功能。对于目标检测任务官方提供了n/s/m/l/x五个模型,我们在使用YOLOV8模型进行自己任务训练时,应该如何选择YOLOV8的模型以及输入尺寸大小呢?YOLOV8官网:https://github.com/ultralytics/ultralyticsYOLOV8n/s/m/l/x信息
- Python 使用 Detectron2 进行目标检测 (Detectron2, CenterNet2, Detic)
Eric Woo X
PythonAIUbuntupython目标检测开发语言
代码说明代码主要是一个用来演示如何使用Detectron2进行目标检测的脚本。它可以从摄像头或视频文件中读取图像,并应用指定的配置文件进行目标检测。其中,Detectron2结合了CenterNet2和Detic进行目标检测。主要库介绍Detectron2Detectron2是由FacebookAIResearch开发的一个用于目标检测和实例分割的开源库。它提供了一系列预训练模型和灵活的配置系统,
- 学习记录——语义分割和实例分割的标签结构
落叶击球
学习笔记学习人工智能
语义分割:一张样本,生成一张掩码图像标签。灰度图像,背景亮度为0,每个目标根据分类赋予不同亮度——1,2,3......实现像素级的类别区分,但无法区分个体。实例分割:原理:一张样本,生成一个多通道的Mat矩阵,也就是多张掩码图像叠在一起。每张掩码图负责存储一个类别的目标,亮度只有0和1,通过通道号区分每个类别。同时,每张掩码图内,每个目标拥有ID号(通过增加一个维度实现),负责区分一个类别中的每
- 快速使用transformers的pipeline实现各种深度学习任务
E寻数据
huggingface计算机视觉nlp深度学习人工智能pythonpipelinetransformers
目录引言安装情感分析文本生成文本摘要图片分类实例分割目标检测音频分类自动语音识别视觉问答文档问题回答图文描述引言在这篇中文博客中,我们将深入探讨使用transformers库中的pipeline()函数,它为预训练模型提供了一个简单且快速的推理方法。pipeline()函数支持多种任务,包括文本分类、文本生成、摘要生成、图像分类、图像分割、对象检测、音频分类、自动语音识别、视觉问题回答、文档问题回
- SAM 2——视频和图像实时实例分割的全新开源模型
知来者逆
计算机视觉SAMSAM2实例分割图像分割语义分割万物分割计算机视觉
引言源码地址:https://github.com/facebookresearch/segment-anything-2过去几年,人工智能领域在文本处理的基础人工智能方面取得了显著进步,这些进步改变了从客户服务到法律分析等各个行业。然而,在图像处理方面,我们才刚刚开始。视觉数据的复杂性以及训练模型以准确解释和分析图像的挑战带来了重大障碍。随着研究人员继续探索图像和视频的基础人工智能,人工智能图像
- 周报 | 24.8.12-24.8.18文章汇总
双木的木
深度学习拓展阅读深度学习人工智能transformer算法pythonstablediffusionllama
为了更好地整理文章和发表接下来的文章,以后每周都汇总一份周报。周报|24.8.5-24.8.11文章汇总-CSDN博客OpenCV与AI深度学习|实战|使用YoloV8实例分割识别猪的姿态(含数据集)-CSDN博客极市平台|异常检测开源数据集汇总-CSDN博客程序员学长|快速学习一个算法,集成学习-CSDN博客Coggle数据科学|行业落地分享:大模型RAG汽车应用实践_rag中的意图识别-CSD
- 计算机设计大赛 深度学习人体语义分割在弹幕防遮挡上的实现 - python
iuerfee
python
文章目录1前言1课题背景2技术原理和方法2.1基本原理2.2技术选型和方法3实例分割4实现效果5最后1前言优质竞赛项目系列,今天要分享的是深度学习人体语义分割在弹幕防遮挡上的应用该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:3分更多资料,项目分享:https://gitee.com/dancheng-senior/p
- 助力工业生产质检,基于轻量级yolov8-seg开发构建工业场景下滚珠丝杠传动表面缺陷分割检测系统
Together_CZ
YOLO
AI赋能工业生产是一个强有力的方式,在我们之前的系列博文中也有很多相应的开发实践,感兴趣的胡都可以自行移步阅读,本文的核心思想就是想要基于轻量级的实例分割模型来开发构建工业场景下的滚珠丝杠传动表面缺陷分割检测系统,首先看下实例效果:简单看下数据集:YOLOv8官方项目地址在这里,如下所示:目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:Modelsize(pixels)mAP
- 【深度学习每日小知识】全景分割
jcfszxc
深度学习术语表专栏深度学习人工智能
全景分割全景分割是一项计算机视觉任务,涉及将图像或视频分割成不同的对象及其各自的部分,并用相应的类别标记每个像素。与传统的语义分割相比,它是一种更全面的图像分割方法,传统的语义分割仅将图像划分为类别,而不考虑对象的部分。全景分割算法将语义分割和实例分割相结合,可以区分对象的一般类及其组成部分或实例。它们可以处理各种对象类,例如物体(例如天空、草地和道路)和事物(例如车辆、人和建筑物),并精确地分割
- TBC(Tied Block Convolution):具有共享较薄滤波器的更简洁、更出色的CNN
静静AI学堂
高质量AI论文翻译cnn人工智能神经网络
文章目录摘要引言相关工作TiedBlockConvolution网络设计TBC公式化在瓶颈模块中的TBC/TGCTBC和TFC在注意力模块中的应用实验结果ImageNet分类物体检测和实例分割轻量级注意力消融研究总结补充资料物体检测和实例分割的详细结果额外的Grad-CAM可视化结果
- PyTorch深度学习实战(26)——多对象实例分割
盼小辉丶
深度学习pytorch人工智能
PyTorch深度学习实战(26)——多对象实例分割0.前言1.获取并准备数据2.使用Detectron2训练实例分割模型3.对新图像进行推断小结系列链接0.前言我们已经学习了多种图像分割算法,在本节中,我们将学习如何使用Detectron2平台以及Google开放图像数据集执行多对象实例分割任务。Detectron2是Facebook团队打造的人工智能框架,其中包括了高性能的对象检测算法实现,包
- yolov8之训练、验证、预测、导出
Jumy_S
YOLO
yolov8之训练、验证、预测、导出yolov8之训练、验证、预测、导出yolov8之训练、验证、预测、导出链接:https://pan.baidu.com/s/1_9hI8ZshNCJSMJVXNTVxbQ?pwd=1234提取码:1234一YoloV8数据集制作1.labelme的使用2.数据集转为yolo格式二使用yolov8进行训练、验证、预测、导出1.图像分类2.图像检测3.实例分割1.
- 2023最新半监督语义分割综述 | 技术总结与展望!
自动驾驶之心
计算机视觉人工智能深度学习python机器学习
作者|派派星编辑|CVHub点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取点击进入→自动驾驶之心【语义分割】技术交流群后台回复【分割综述】获取语义分割、实例分割、全景分割、弱监督分割等超全学习资料!Title:ASurveyonSemi-SupervisedSemanticSegmentationPaper:https://arxiv.org/pdf/2302.09899.pd
- 【计算机视觉】计算机视觉与深度学习-08-实例分割-北邮鲁鹏老师课程笔记
暖焱
#计算机视觉
计算机视觉与深度学习-08-实例分割-北邮鲁鹏老师课程笔记MaskR-CNNMaskR-CNN
- 【大厂AI课学习笔记】【1.5 AI技术领域】(7)图像分割
giszz
学习笔记人工智能学习笔记
今天学习到了图像分割。这是我学习笔记的脑图。图像分割,ImageSegmentation,就是将数字图像分割为若干个图像子区域(像素的集合,也被称为超像素),改变图像的表达方式,以更容易理解和分析。图像分割,十分重要,也十分困难,是计算机视觉中的关键步骤。图像分割分为三类:语义分割。预测出输入熟悉的每个像素点属于哪一类的标签实例分割。在语义分割的基础上,还要区分出同一类的不同个体全景分割。在实例分
- 实例分割论文阅读之:FCN:《Fully Convolutional Networks for Semantica Segmentation》
交换喜悲
mdetection系列论文阅读目标检测人工智能实例分割计算机视觉卷积神经网络
论文地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf代码链接:https://github.com/pytorch/vision摘要卷积网络是强大的视觉模型,可以产生特征层次结构。我们证明,经过端到端、像素到像素训练的卷积网络
- 实例分割模型transfiner《transfiner-Mask Transfiner for High-Quality Instance Segmentaion》
交换喜悲
mdetection系列人工智能目标检测计算机视觉深度学习论文阅读python
论文:《MaskTransfinerforHigh-QualityInstanceSegmentaion》论文地址:https://arxiv.org/abs/2111.13673代码:https://github.com/SysCV/transfiner1.环境配置condacreate-ntransfinerpython=3.7-ycondaactivatetransfinercondains
- 实例分割模型解析:solo模型
交换喜悲
mdetection系列人工智能目标检测计算机视觉深度学习
论文链接:https://arxiv.org/abs/1912.04488代码:https://github.com/WXinlong/SOLO1.摘要我们提出了一种新的、极其简单的实例分割方法。与许多其他密集预测任务(例如语义分割)相比,任意数量的实例使得实例分割更具挑战性。为了预测每个实例的掩码,主流方法要么遵循“检测然后分段”策略(例如,MaskR-CNN),要么首先预测嵌入向量,然后使用聚
- 实例分割论文阅读之:《Mask Transfiner for High-Quality Instance Segmentation》
交换喜悲
mdetection系列论文阅读目标检测人工智能深度学习transformer
1.摘要两阶段和基于查询的实例分割方法取得了显著的效果。然而,它们的分段掩模仍然非常粗糙。在本文中,我们提出了一种高质量和高效的实例分割MaskTransfiner。我们的MaskTransfiner不是在规则的密集张量上操作,而是将图像区域分解并表示为四叉树。我们基于变压器的方法只处理检测到的容易出错的树节点,并并行地自我纠正它们的错误。虽然这些稀疏像素只占总数的一小部分,但它们对最终的掩模质量
- 目标检测:3采用YOLOv8 API训练自己的模型
proing
AI目标检测目标跟踪人工智能
目录1.YOLOv8的新特性2.如何使用YOLOv8?3使用YOLOv8训练模型4.验证训练集5.测试训练集6.测验其他图片7其他问题参考:1.YOLOv8的新特性Ultralytics为YOLO模型发布了一个全新的存储库。它被构建为用于训练对象检测、实例分割和图像分类模型的统一框架。2.如何使用YOLOv8?要充分发挥YOLOv8的潜力,需要从存储库和ultralytics包中安装要求。要安装要
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l