- MoveNet: PyTorch实现的轻量级人体姿态估计框架
侯深业Dorian
MoveNet:PyTorch实现的轻量级人体姿态估计框架movenet.pytorch项目地址:https://gitcode.com/gh_mirrors/mo/movenet.pytorchMoveNet是一个基于PyTorch的人体姿态估计算法实现,由开发者fire717贡献至GitCode平台。该项目旨在提供一个高效、易用的解决方案,用于实时处理视频或图像中的人体动作识别。通过其强大的性
- Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation
MatthewHsw
SimplePose
arxiv:https://arxiv.org/pdf/1911.10529.pdfgithub:https://github.com/jialee93/Improved-Body-Parts原作者在知乎有讲解,链接既然是Rethinking,那么就要先只出需要rethinking的内容.文章主要针对于人体姿态估计中的bottom-up的方法,提出了关于bottom-up方法里的一些问题的思考:人
- 3D人体姿态估计(教程+代码)
毕设阿力
3d计算机视觉深度学习
3D人体姿态估计是指通过计算机视觉技术和深度学习算法,从图像或视频数据中准确地推测出人体的三维姿态信息,包括关节位置、角度和运动轨迹等。这项技术在虚拟现实、增强现实、运动分析、人体动作捕捉等领域具有广泛的应用前景。实现3D人体姿态估计的关键挑战之一是从二维图像中还原出人体的三维结构。通常,这需要使用多视角图像、深度传感器或者先进的深度学习模型来提取更丰富的信息以重建三维姿态。目前,基于深度学习的方
- 论文阅读:《Deep Learning-Based Human Pose Estimation: A Survey》——Part 1:2D HPE
自信且放光芒66
深度学习论文阅读深度学习人工智能
目录人体姿态识别概述论文框架HPE分类人体建模模型二维单人姿态估计回归方法目前发展优化基于热图的方法基于CNN的几个网络利用身体结构信息提供构建HPE网络视频序列中的人体姿态估计2D多人姿态识别方法自上而下自下而上2DHPE总结数据集和评估指标2DHPE数据集2DHPE评价指标2DHPE方法性能的比较单人2DHPE多人2DHPE未来展望人体姿态识别概述应用模块:人机交互、运动分析、增强现实、虚拟现
- 【iOS ARKit】3D人体姿态估计实例
扬帆起航&d
ios3d
与2D人体姿态检测一样,在ARKit中,我们不必关心底层的人体骨骼关节点检测算法,也不必自己去调用这些算法,在运行使用ARBodyTrackingConfiguration配置的ARSession之后,基于摄像头图像的3D人体姿态估计任务也会启动,我们可以通过session(_session:ARSession,didUpdateanchors:[ARAnchor])代理方法直接获取检测到的ARB
- 【iOS ARKit】3D 人体姿态估计
扬帆起航&d
ios3d
与基于屏幕空间的2D人体姿态估计不同,3D人体姿态估计是尝试还原人体在三维世界中的形状与姿态,包括深度信息。绝大多数的现有3D人体姿态估计方法依赖2D人体姿态估计,通过获取2D人体姿态后再构建神经网络算法,实现从2D到3D人体姿态的映射。在ARKit中,由于是采用计算机视觉的方式估计人体姿态,与2D人体姿态估计一样,3D人体姿态估计也受到遮挡、光照、姿态、视角的影响,并且相比于2D人体姿态估计,3
- 基于 pytorch-openpose 实现 “多目标” 人体姿态估计
北桥苏
pytorch人工智能python
前言还记得上次通过MediaPipe估计人体姿态关键点驱动3D角色模型,虽然节省了动作K帧时间,但是网上还有一种似乎更方便的方法。MagicAnimate就是其一,说是只要提供一张人物图片和一段动作视频(舞蹈武术等),就可以完成图片人物转视频。于是我就去官网体验了一下,发现动作的视频长度不能超过5秒,当然,如果说要整长视频可以切多段处理再合成解决。主要的还是视频需要那种背景相对较纯的,不然提交表单
- 【时间序列篇】基于LSTM的序列分类-Pytorch实现 part3 化为己用
钟的子期
深度学习lstm分类pytorch
系列文章目录【时间序列篇】基于LSTM的序列分类-Pytorch实现part1案例复现【时间序列篇】基于LSTM的序列分类-Pytorch实现part2自有数据集构建【时间序列篇】基于LSTM的序列分类-Pytorch实现part3化为己用在一个人体姿态估计的任务中,需要用深度学习模型来进行序列分类。化为己用,实现成功。文章目录系列文章目录前言一、模型训练1导入库和自用函数2导入数据集3设备部署4
- 【时间序列篇】基于LSTM的序列分类-Pytorch实现 part2 自有数据集构建
钟的子期
深度学习lstm分类pytorch
系列文章目录【时间序列篇】基于LSTM的序列分类-Pytorch实现part1案例复现【时间序列篇】基于LSTM的序列分类-Pytorch实现part2自有数据集构建【时间序列篇】基于LSTM的序列分类-Pytorch实现part3化为己用在一个人体姿态估计的任务中,需要用深度学习模型来进行序列分类。时间花费最多的是在数据集的处理上。这一节主要内容就是对数据集的处理。文章目录系列文章目录前言一、任
- OPENPOSE人体姿态估计课程设计
冰雪与岩石
python人脸识别手势识别
心路历程:拿到这个题目一脸懵,完全不知道要做什么,尽管模型不需要自己训练(模型来源),可是完全不知道怎么使用,帮助文档好长,看了好久。最后运行了demo后,也不知道这东西有什么用(应该是这东西我有什么是能做出来的。陷入无限百度…)一、模型下载下载下来的模型文件中有一个demo,在bin文件夹下,命令行下使用python是openpose的示例。(我下载的模型文件夹)此外,里面models文件夹里有
- Python+OpenCV+OpenPose实现人体姿态估计(人体关键点检测)
weixin_44079197
python开发语言
目录1、人体姿态估计简介2、人体姿态估计数据集3、OpenPose库4、实现原理5、实现神经网络6、实现代码1、人体姿态估计简介人体姿态估计(HumanPostureEstimation),是通过将图片中已检测到的人体关键点正确的联系起来,从而估计人体姿态。人体关键点通常对应人体上有一定自由度的关节,比如颈、肩、肘、腕、腰、膝、踝等,如下图。通过对人体关键点在三维空间相对位置的计算,来估计人体当前
- 第十四周周报
Joy_moon
机器学习图像处理
文章目录摘要文献阅读Openpose方法模型的任务具体工作流程模型工作流程PAF(部分亲合场)匈牙利算法数据标签的制作总结摘要上周在那篇综述文章里,分视角和单视角去实现3d人体姿态估计。我就找了一篇多视角实现的人体估计的文章。使用openpose和评估3d无标记运动捕捉,然后我看了一篇使用openpose和评估3d无标记运动捕捉。然后我实在不懂这个openpose的原理,我就又去找了openpos
- 3D人体姿态估计
从懒虫到爬虫
3d目标检测
3D人体姿态估计是指通过算法对输入的图像或视频进行分析,推断出人体的三维姿态信息。该技术可以应用于许多领域,如虚拟现实、运动分析、人机交互等。1.算法原理:3D人体姿态估计利用深度学习模型作为算法的核心,通过网络学习人体姿态的表示和映射关系。该算法有两个阶段,第一阶段是从输入的图像或视频中提取人体的二维姿态信息;第二阶段是通过三维姿态恢复算法将二维姿态信息映射到三维空间中。2.视觉特征提取:3D人
- 3D人体姿态估计(教程+代码)
阿利同学
3d3d姿态估计姿态估计手势识别姿态识别
3D人体姿态估计是指通过计算机视觉和深度学习技术,从图像或视频中推断出人体的三维姿态信息。它是计算机视觉领域的一个重要研究方向,具有广泛的应用潜力,如人机交互、运动分析、虚拟现实、增强现实等。传统的2D人体姿态估计方法主要关注通过二维图像进行姿态推断,即从图像中提取人体关键点位置信息,然后根据这些关键点的空间关系推断出人体的姿态。然而,由于2D图像投影存在深度信息的缺失和模糊,2D姿态估计往往无法
- Human3.6m数据处理(mhformer代码解读)
从月亮走向月亮7
计算机视觉
对于3d人体姿态估计任务中数据集human3.6m的处理写在最前面:这是我自己的理解,说的不一定对。human3.6m有很多格式的数据,包括视频、2dgroundtruth、3dgroundtruth,还分为xyz坐标的表示形式和旋转向量表示形式,这篇只用到2d和3dgroundtruth(坐标表示的)。这篇csdn以cvpr2022的mhformer为例,基本上videopose3d之后数据处理
- YOLOv7+Pose姿态估计+tensort部署加速
从懒虫到爬虫
YOLO
YOLOv7是一种基于深度学习的目标检测算法,它能够在图像中准确识别出不同目标的位置和分类。而姿态估计pose和tensort则是一种用于实现人体姿态估计的算法,可以对人体的关节位置和方向进行精准的检测和跟踪。下面我将分点阐述YOLOv7姿态估计pose+tensort部署加速的相关内容:1.YOLOv7的特点和优势YOLOv7是目前比较流行的目标检测算法之一,它具有以下特点和优势:(1)快速高效
- 2D行人姿态估计和跟踪:*Simple Baselines for Human Pose Estimation and Tracking
AIRV_Gao
论文笔记算法计算机视觉深度学习
2D行人姿态估计和跟踪:SimpleBaselinesforHumanPoseEstimationandTracking论文网址:https://arxiv.org/abs/1804.06208论文代码:https://github.com/Microsoft/human-pose-estimation.pytorch论文类型:2018ECCV1.简介本论文介绍了人体姿态估计和跟踪方法。虽然目前在
- 人体姿态估计:BlazePose
AIRV_Gao
论文笔记
BlazePose:On-deviceReal-timeBodyPosetracking解析1.概述2.模型构架和pipeline设计2.1推理流程(Inferencepipeline)2.2Persondetector2.3拓扑结构(Topology)2.4数据集2.5网络结构2.6对齐和遮挡增强3.实验论文连接:https://arxiv.org/pdf/2006.10204.pdf论文代码:
- 视频姿态估计:DeciWatch
AIRV_Gao
论文笔记姿态估计transformer
DeciWatch:ASimpleBaselinefor10×Efficient2Dand3DPoseEstimation解析摘要1.简介2.RelatedWork2.1高效的人体姿态估计2.2MotionCompletion(运动补全)3.Method3.1问题定义和概述3.2获取采样姿势3.3DenoisingtheSampledPoses(去噪采样的姿态)3.4RecoveringtheSa
- 2023 英特尔On技术创新大会直播 |探索视觉AI的无限可能
以山河作礼。
活动文章人工智能
2023英特尔On技术创新大会直播|探索视觉AI的无限可能前言一·未来的AI:释放视觉AI真正潜力二·AI技术突破、视觉Al挑战及前沿研究创新三·全尺度视觉学习全尺度视觉学习示例1.GridConv实现三维人体姿态估计更高准确率2.KW预训练及迁移模型性能3.无数据增强稠密对比知识蒸馏(Af-DCD)4.全扩展视觉AI-OSVAlModelLearnerZoo四·沟建AI技术闭环、释放视觉AI真正
- YOLOv8-DeepSort/ByteTrack-PyQt-GUI:全面解决方案,涵盖目标检测、跟踪和人体姿态估计
从懒虫到爬虫
YOLOpyqt目标检测
YOLOv8-DeepSort/ByteTrack-PyQt-GUI是一个多功能图形用户界面,旨在充分发挥YOLOv8在目标检测/跟踪和人体姿态估计/跟踪方面的能力,与图像、视频或实时摄像头流进行无缝集成。支持该应用的Python脚本使用ONNX格式的YOLOv8模型,确保各种人工智能(AI)任务的高效和准确执行。全面的AI任务该应用支持一系列AI任务,包括:目标检测:使用YOLOv8模型在图像或
- 人体姿态估计算法
Jiaxxxxxx
计算机视觉算法计算机视觉
人体姿态估计算法1什么是人体姿态估计2基于经典传统和基于深度学习的方法2.1基于经典传统的人体姿态估计算法2.2基于深度学习的人体姿态估计算法OpenPoseAlphaPose(RMPE)3算法应用4Paper人体姿态估计在现实中的应用场景很丰富,如下动作捕捉:三维特效场景人机交互:动作控制、手势控制VR,AR:元宇宙数字人、抖音尬舞机、3D试衣、虚拟主播肢体语言理解:机场、交警警察手势翻译、手语
- YOLOv8界面-目标检测+语义分割+追踪+姿态识别(姿态估计)+界面DeepSort/ByteTrack-PyQt-GUI
阿利同学
YOLO目标检测pyqtyolov8界面姿态估计语义分割实例分割
YOLOv8-DeepSort/ByteTrack-PyQt-GUI:全面解决方案,涵盖目标检测、跟踪和人体姿态估计YOLOv8-DeepSort/ByteTrack-PyQt-GUI是一个多功能图形用户界面,旨在充分发挥YOLOv8在目标检测/跟踪和人体姿态估计/跟踪方面的能力,与图像、视频或实时摄像头流进行无缝集成。支持该应用的Python脚本使用ONNX格式的YOLOv8模型,确保各种人工智
- 人体姿态估计 - Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression(DEKR)
tang-0203
关键点检测人体姿态估计
B站:https://www.bilibili.com/video/BV1ky4y1s76X?spm_id_from=333.999.0.0人体姿态估计方法分类Top-Downpipeline:图片->检测器->多个行人->forpersonindetectedpersons,单独做关键点检测优点:精度高缺点:计算量大,耗时高Bottom-Uppipeline:图片->关键点回归(heatmap估
- AlphaPose-RKNN-rk3588
呆呆珝
深度学习人工智能
1.AlphaPose背景介绍AlphaPose是一个用于人体姿态估计的开源工具。人体姿态估计在计算机视觉中是一个核心问题,它旨在定位并识别图像或视频中的人体关键点和骨骼结构。在许多应用中,如动作识别、行为分析、虚拟现实和增强现实,人体姿态估计都发挥着重要作用。2.基本思路姿态估计有自顶向下(top-down)和自底向上(bottom-up)的两种策略。其中:自顶向下策略首先检测图像中的人物实例,
- 极智AI | Realtime Multi-Person人体姿态估计之OpenPose
极智视界
极智AIopenpose人体姿态估计姿态识别关键点检测深度学习人工智能
欢迎关注我的公众号[极智视界],获取我的更多经验分享大家好,我是极智视界,本文来介绍一下RealtimeMulti-Person人体姿态估计之OpenPose。邀您加入我的知识星球「极智视界」,星球内有超多好玩的项目实战源码下载,链接:https://t.zsxq.com/0aiNxERDqOpenPose主要是采用一个叫做PAF(PartAffinityFields,翻译过来是叫部件亲和场)来预
- (论文阅读32/100)Flowing convnets for human pose estimation in videos
朽月初二
论文阅读
32.文献阅读笔记简介题目Flowingconvnetsforhumanposeestimationinvideos作者TomasPfister,JamesCharles,andAndrewZisserman,ICCV,2015.原文链接https://arxiv.org/pdf/1506.02897.pdf关键词HumanPoseEstimationinVideos研究问题视频中的人体姿态估计研
- 【CV with Pytorch】第 6 章 :姿态估计
Sonhhxg_柒
使用PyTorch的计算机视觉项目pytorch人工智能python
人体姿势估计(HPE)是一项计算机视觉任务,它通过估计给定帧/视频中的主要关键点(例如眼睛、耳朵、手和腿)来检测人体姿势。图6-1显示了人体姿态估计的一个例子。图6-1HPE示例人体姿势检测有助于跟踪人体部位和关节。在人体中识别的一些关键点是手臂、腿、眼睛、耳朵、鼻子等,它们可以帮助我们跟踪运动。HPE主要广泛应用于机器人、理解人类活动和行为、运动分析等领域。深度学习概念,尤其是CNN架构,专为H
- python3跑通smpl模型_SMPL模型学习
助手的小跟班
python3跑通smpl模型
动画制作相关术语Vertex(顶点):动画模型可以看成多个小三角形(四边形)组成,每个小三角形就可以看成一个顶点。顶点越多,动画模型越精细。骨骼点:人体的一些关节点,类似于人体姿态估计的关键点。每个骨骼点都由一个三元组作为参数去控制(可以查看欧拉角,四元数相关概念)蒙皮:将模型从一个姿态转变为另一个姿态,使用的转换矩阵叫做蒙皮矩阵。骨骼蒙皮(Rig):建立骨骼点和顶点的关联关系。每个骨骼点会关联许
- (论文阅读28/100 人体姿态估计)Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
朽月初二
论文阅读计算机视觉人工智能
28.文献阅读笔记简介题目RealtimeMulti-Person2DPoseEstimationusingPartAffinityFields作者ZheCao,TomasSimon,Shih-EnWei,andYaserSheikh,CVPR,2017.原文链接arxiv.org/pdf/1611.08050.pdf【人体姿态估计2】Real-timeMulti-person2dposeesti
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S