mnist 数据集:包含 7 万张黑底白字手写数字图片,其中 55000 张为训练集,5000 张为验证集,10000 张为测试集。每张图片大小为 28*28 像素,图片中纯黑色像素值为 0,纯白色像素值为 1。数据集的标签是长度为 10 的一维数组,数组中每个元素索引号表示对应数字出现的概率。
在将 mnist 数据集作为输入喂入神经网络时,需先将数据集中每张图片变为长度784 一维数组,将该数组作为神经网络输入特征喂入神经网络。
例如:
一张数字手写体图片变成长度为 784 的一维数组[0.0.0.0.0.231 0.235 0.459 ……0.219 0.0.0.0.]输入神经网络。该图片对应的标签为[0.0.0.0.0.0.1.0. 0.0],标签中索引号为 6 的元素为 1,表示是数字 6 出现的概率为 100%,则该图片对应的识别结果是 6。
使用 input_data 模块中的 read_data_sets()函数加载 mnist 数据集:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets(’./data/’,one_hot=True)
在 read_data_sets()函数中有两个参数,第一个参数表示数据集存放路径,第二个参数表示数据集的存取形式。当第二个参数为 Ture 时,表示以独热码形式存取数据集。read_data_sets()函数运行时,会检查指定路径内是否已经有数据集,若指定路径中没有数据集,则自动下载,并将 mnist 数据集分为训练集 train、验证集 validation 和测试集 test 存放。在终端显示如下内容:
Extracting ./data/train-images-idx3-ubyte.gz Extracting ./data/train-labels-idx1-ubyte.gz
Extracting ./data/tl0k-images-idx3-ubyte.gz Extracting ./data/ tl0k-labels-idx1-ubyte.gz
返回 mnist 数据集中训练集 train、验证集 validation 和测试集 test 样本数
在 Tensorflow 中用以下函数返回子集样本数:
①返回训练集 train 样本数
print (“train data size:”,mnist.train.mun_examples )
输出结果:train data size:55000
②返回验证集 validation 样本数
print (“validation data size:”,mnist.validation.mun_examples)
输出结果:validation data size:5000
③返回测试集 test 样本数
print (“test data size:”,mnist.test.mun_examples)
输出结果:test data size:10000
使用 train.labels 函数返回 mnist 数据集标签:
在 mnist 数据集中,若想要查看训练集中第 0 张图片的标签,则使用如下函数 mnist.train.labels[0]
输出结果:array([0.,0.,0.,0.,0.,0.,1.,0.,0.,0])
使用 train.images 函数返回 mnist 数据集图片像素值:
在 mnist 数据集中,若想要查看训练集中第 0 张图片像素值,则使用如下函数 mnist.train.images[0]
输出结果:array([0. ,0. ,0. ,
0. ,0. ,0. ,
0. ,0. ,0. ,
… … …])
使用 mnist.train.next_batch()函数将数据输入神经网络 例如:
BATCH_SIZE = 200
xs, ys = mnist.train.next_batch(BATCH_SIZE)
print “xs shape:”,xs.shape
print “ys shape:”,ys.shape
输出结果:xs.shape(200,784)
输出结果:ys.shape(200,10)
其中,mnist.train.next_batch()函数包含一个参数 BATCH_SIZE,表示随机从训练集中抽取 BATCH_SIZE 个样本输入神经网络,并将样本的像素值和标签分别赋给 xs 和 ys。在本例中,BATCH_SIZE 设置为 200,表示一次将 200 个样本的像素值和标签分别赋值给 xs 和 ys,故 xs 的形状为(200,784),对应的 ys 的形状为(200,10)。
实现“Mnist 数据集手写数字识别”的常用函数:
①tf.get_collection(“”)函数表示从 collection 集合中取出全部变量生成一个列表。
②tf.add( )函数表示将参数列表中对应元素相加。
例如:
x=tf.constant([[1,2],[1,2]])
y=tf.constant([[1,1],[1,2]])
z=tf.add(x,y)
print z
输出结果:[[2,3],[2,4]]
③tf.cast(x,dtype)函数表示将参数 x 转换为指定数据类型。 例如:
A = tf.convert_to_tensor(np.array([[1,1,2,4], [3,4,8,5]]))
print A.dtype
b = tf.cast(A, tf.float32)
print b.dtype
结果输出:
从输出结果看出,将矩阵 A 由整数型变为 32 位浮点型。
④tf.equal( )函数表示对比两个矩阵或者向量的元素。若对应元素相等,则返回 True;若对应元素不相等,则返回 False。
例如:
A = [[1,3,4,5,6]]
B = [[1,3,4,3,2]]
with tf.Session( ) as sess:
print(sess.run(tf.equal(A, B)))
输出结果:[[ True True True False False]]
在矩阵 A 和 B 中,第 1、2、3 个元素相等,第 4、5 个元素不等,故输出结果中,第 1、2、3 个元素取值为 True,第 4、5 个元素取值为 False。
⑤tf.reduce_mean(x,axis)函数表示求取矩阵或张量指定维度的平均值。若不指定第二个参数,则在所有元素中取平均值;若指定第二个参数为 0,则在第一维元素上取平均值,即每一列求平均值;若指定第二个参数为 1,则在第二维元素上取平均值,即每一行求平均值。
例如:
x = [[1., 1.]
[2., 2.]]
print(tf.reduce_mean(x)) 输出结果:1.5
print(tf.reduce_mean(x, 0)) 输出结果:[1.5, 1.5]
print(tf.reduce_mean(x, 1)) 输出结果:[1., 1.]
⑥tf.argmax(x, axis)函数表示返回指定维度 axis 下,参数 x 中最大值索引号。
例如:
在 tf.argmax([1,0,0],1)函数中,axis 为 1,参数 x 为[1,0,0],表示在参数 x的第一个维度取最大值对应的索引号,故返回 0。
⑦os.path.join()函数表示把参数字符串按照路径命名规则拼接。
例如: import os
os.path.join('/hello/','good/boy/','doiido')
输出结果:'/hello/good/boy/doiido'
⑧字符串.split( )函数表示按照指定“拆分符”对字符串拆分,返回拆分列表。
例如:
'./model/mnist_model-1001'.split('/')[-1].split('-')[-1]
在该例子中,共进行两次拆分。第一个拆分符为‘/’,返回拆分列表,并提取列表中索引为-1 的元素即倒数第一个元素;第二个拆分符为‘-’,返回拆分列表,并提取列表中索引为-1 的元素即倒数第一个元素,故函数返回值为 1001。
⑨tf.Graph( ).as_default( )函数表示将当前图设置成为默认图,并返回一个上下文管理器。该函数一般与 with 关键字搭配使用,应用于将已经定义好的神经网络在计算图中复现。
例如:
with tf.Graph().as_default() as g,表示将在 Graph()内定义的节点加入到计算图 g 中。
神经网络模型的保存
在反向传播过程中,一般会间隔一定轮数保存一次神经网络模型,并产生三个文件(保存当前图结构的.meta 文件、保存当前参数名的.index 文件、保存当前参数的.data 文件),在 Tensorflow 中如下表示:
saver = tf.train.Saver()
with tf.Session() as sess:
for i in range(STEPS):
if i % 轮数 == 0:
saver.save(sess, os.path.join (MODEL_SAVE_PATH, MODEL_NAME) ,
global_step=global_step)
其中,tf.train.Saver()用来实例化 saver 对象。上述代码表示,神经网络每循环规定的轮数,将神经网络模型中所有的参数等信息保存到指定的路径中,并在存放网络模型的文件夹名称中注明保存模型时的训练轮数。
神经网络模型的加载
在测试网络效果时,需要将训练好的神经网络模型加载,在 Tensorflow 中这样表示:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(存储路径)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
在 with 结构中进行加载保存的神经网络模型,若 ckpt 和保存的模型在指定路径中存在,则将保存的神经网络模型加载到当前会话中。
加载模型中参数的滑动平均值
在保存模型时,若模型中采用滑动平均,则参数的滑动平均值会保存在相应文件中。通过实例化 saver 对象,实现参数滑动平均值的加载,在 Tensorflow 中如下表示:
ema = tf.train.ExponentialMovingAverage(滑动平均基数)
ema_restore = ema.variables_to_restore() saver = tf.train.Saver(ema_restore)
神经网络模型准确率评估方法
在网络评估时,一般通过计算在一组数据上的识别准确率,评估神经网络的效果。在 Tensorflow 中这样表示:
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
在上述中,y 表示在一组数据(即 batch_size 个数据)上神经网络模型的预测结果,y 的形状为[batch_size,10],每一行表示一张图片的识别结果。通过tf.argmax()函数取出每张图片对应向量中最大值元素对应的索引值,组成长度为输入数据 batch_size 个的一维数组。通过 tf.equal()函数判断预测结果张量和实际标签张量的每个维度是否相等,若相等则返回 True,不相等则返回 False。通过 tf.cast() 函数将 得到的 布 尔 型 数 值 转 化 为 实 数 型 , 再通过 tf.reduce_mean()函数求平均值,最终得到神经网络模型在本组数据上的准确率。
实现手写体 mnist 数据集的识别任务,共分为三个模块文件,分别是描述网络结构的前向传播过程文件(mnist_forward.py)、描述网络参数优化方法的反向传播过程文件( mnist_backward.py )、 验证模型准确率的测试过程文件(mnist_test.py)。
①前向传播过程文件(mnist_forward.py)
在前向传播过程中,需要定义网络模型输入层个数、隐藏层节点数、输出层个数,定义网络参数 w、偏置 b,定义由输入到输出的神经网络架构。 实现手写体 mnist 数据集的识别任务前向传播过程如下:
# mnist_forward.py
import tesorflow as tf
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500
def get_weight(shape, regularizer):
w = tf.Variable(tf.truncated_normal(shape, stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses',tf.contrib.layer.l2_regularizer(regularizer)(w))
return w
def get_bias(shape):
b = tf.Variable(tf.zeros(shape))
return b
def forward(x, regularier):
w1 = get_weight([INPUT_NODE, LAYER1_NODE], regularizer)
b1 = get_bias([LAYER1_NODE])
y1 = tf.nn.relu(tf.matmul(x, w1)+b1)
w2 = get_weight([LAYER1_NODE, OUTPUT_NODE], regularizer)
b2 = get_bias([OUTPUT_NODE])
y = tf.matmul(y1, w2) + b2
return y
由上述代码可知,在前向传播过程中,规定网络输入结点为 784 个(代表每张输入图片的像素个数),隐藏层节点 500 个,输出节点 10 个(表示输出为数字 0-9的十分类)。由输入层到隐藏层的参数 w1 形状为[784,500],由隐藏层到输出层的参数 w2 形状为[500,10],参数满足截断正态分布,并使用正则化,将每个参数的正则化损失加到总损失中。由输入层到隐藏层的偏置 b1 形状为长度为 500的一维数组,由隐藏层到输出层的偏置 b2 形状为长度为 10 的一维数组,初始化值为全 0。前向传播结构第一层为输入 x 与参数 w1 矩阵相乘加上偏置 b1,再经过 relu 函数,得到隐藏层输出 y1。前向传播结构第二层为隐藏层输出 y1 与参数 w2 矩阵相乘加上偏置 b2,得到输出 y。由于输出 y 要经过 softmax 函数,使其符合概率分布,故输出 y 不经过 relu 函数。
②反向传播过程文件(mnist_backward.py)
反向传播过程实现利用训练数据集对神经网络模型训练,通过降低损失函数值,实现网络模型参数的优化,从而得到准确率高且泛化能力强的神经网络模型。 实现手写体 mnist 数据集的识别任务反向传播过程如下:
# mnist_backward.py
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import os
BATCH_SIZE = 200
LEARNING_RATE_BASE = 0.1
LEARNING_RATE_DACAY = 0.99
REGULARIZER = 0.0001
STEPS = 50000
MOVING_AVERAGE_DACAY = 0.99
MODEL_SAVE_PATH = "./model/"
MODEL_NAME = "mnist_model"
def backward(mnist):
x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
y = mnist_forward.forward(x, REGULARIZER)
global_step = tf.Variable(0, trainale=False)
ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cem = tf.reduce_mean(ce)
loss = cem + tf.add_n(tf.get_collection("losses"))
learning_rate = tf.train.expontial_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True);
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
ema_op = mea.apply(tf.trainable_variables())
with tf.control_dependencies([train_step, ema_op]):
train_op = tf.no_op(name="train")
saver = tf.train.Saver()
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
for ii range(STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x:xs, y_:ys})
if i%1000 ==0:
print("After {} training steps, loss on training batch is {}".format(step, loss_value))
saver.save(sess, os.path.joi(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
def main():
mnist = input_data.read_data_sets("./data/", one_hot=True)
if __name__ == '__main__':
main()
由上述代码可知,在反向传播过程中,首先引入 tensorflow、input_data、前向传播 mnist_forward 和 os 模块,定义每轮喂入神经网络的图片数、初始学习率、学习率衰减率、正则化系数、训练轮数、模型保存路径以及模型保存名称等相关信息。在反向传播函数 backword 中,首先读入mnist,用placeholder 给训练数据 x 和标签 y_占位,调用mnist_forward 文件中的前向传播过程 forword()函数,并设置正则化,计算训练数据集上的预测结果 y,并给当前计算轮数计数器赋值,设定为不可训练类型。接着,调用包含所有参数正则化损失的损失函数loss,并设定指数衰减学习率 learning_rate。然后,使用梯度衰减算法对模型优化,降低损失函数,并定义参数的滑动平均。最后,在 with 结构中,实现所有参数初始化,每次喂入 batch_size 组(即 200 组)训练数据和对应标签,循环迭代 steps 轮,并每隔 1000 轮打印出一次损失函数值信息,并将当前会话加载到指定路径。最后,通过主函数 main(),加载指定路径下的训练数据集,并调用规定的 backward()函数训练模型。
③测试过程文件(mnist_test.py)
当训练完模型后,给神经网络模型输入测试集验证网络的准确性和泛化性。注意,所用的测试集和训练集是相互独立的。 实现手写体 mnist 数据集的识别任务测试传播过程如下:
# mnist_test.py
import time
import tensorflow as tf
form tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import mnist_backward
TEST_INTERVAL_SECS = 5
def test(mnist):
with tf.Graph().as_default() as g:
x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
y = mnist_forward.forward(x, None)
ema = tf.train.ExpoentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
ema_restore = ema.variables_to_restore()
saver = tf.train_mean(tf.cast(correct_prediction, tf.float32))
while True:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore = (sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy, feed_dict={x:mnist.test.images, y_:mnist.test.labels})
print("After {} training steps, test accuracy = {}".format(global_step, accuracy_score))
else:
print("No checkpoint file found")
time.sleep(TEST_INTERVAL_SECS)
def main():
mnist = input_data.read_data_sets("./data", onr_hot=True)
test(mnist)
if __name__ == "__main__":
main()
在上述代码中,首先需要引入 time 模块、tensorflow、input_data、前向传播mnist_forward、反向传播 mnist_backward 模块和 os 模块,并规定程序 5 秒的循环间隔时间。接着,定义测试函数 test(),读入 mnist 数据集,利用 tf.Graph()复现之前定义的计算图,利用 placeholder 给训练数据 x 和标签 y_占位,调用mnist_forward 文件中的前向传播过程 forword()函数,计算训练数据集上的预测结果 y。接着,实例化具有滑动平均的 saver 对象,从而在会话被加载时模型中的所有参数被赋值为各自的滑动平均值,增强模型的稳定性,然后计算模型在测试集上的准确率。在 with 结构中,加载指定路径下的 ckpt,若模型存在,则加载出模型到当前对话,在测试数据集上进行准确率验证,并打印出当前轮数下的准确率,若模型不存在,则打印出模型不存在的提示,从而 test()函数完成。 通过主函数 main(),加载指定路径下的测试数据集,并调用规定的 test 函数,进行模型在测试集上的准确率验证。