模型的搭建按照自己的想法设计的,源码共7个.py文件,如下图:

  

python搭建多层神经网络_第1张图片


  按照创建先后顺序,分别是:data.py,layer.py,network.py,activation.py,loss.py,train.py,evaluate.py。data.py用于获取数据并对数据进行预处理,layer.py创建了一个Layer类,用来表示第L层,network.py抽象了一个网络类,将传入的若干层通过计算输入输出连接起来,组成一个网络,data.py用来读取数据,loss.py明确了交叉熵损失函数和其导数,activation.py分别写了激活函数relu和sigmoid以及其导函数,train.py创建了层次并组成网络,然后对数据进行训练并保存模型,最后evaluate.py用于对测试集进行测试。

  网络分为2大块,正向传播和反向传播:

  但是不管是正向还是反向,网络中的每一层都可以抽象出来,因此创建一个layer类:

  正向传播的L层:

  反向传播的L层:

  在写代码之前,最重要的是确定每个变量和参数的维度:

  正向传播:

  注意:n[L]表示当前层(即第L层)中的神经元个数,n[L-1]表示前一层(即L-1层)的神经元个数,例如在本次程序中,n[0]=12288,n[1]=1000,n[2]=500,n[3]=1

  反向传播:

  1. data.py

  # coding: utf-8

  # 2019/7/20 18:59

  import h5py

  import numpy as np

  def get_train():

  f = h5py.File('dataset/train_catvnoncat.h5','r')

  x_train = np.array(f['train_set_x'])#训练集数据 将数据转化为np.array

  y_train = np.array(f['train_set_y'])#训练集标签

  return x_train,y_train

  def get_test():

  f = h5py.File('dataset/test_catvnoncat.h5', 'r')

  x_test = np.array(f['test_set_x'])#测试集数据 将数据转化为np.array

  y_test = np.array(f['test_set_y'])#测试集标签

  return x_test,y_test

  def preprocess(X):

  #将X标准化,从0-255变成0-1

  # X =X / 255

  #将数据从(m,64,64,3)变成(m,12288)

  X = X.reshape([X.shape[0], X.shape[1]*X.shape[2]*X.shape[3]]).T

  return X

  if __name__ == '__main__':

  x1,y1 = get_train()

  x2,y2 = get_test()

  print(x1.shape,y1.shape)

  print(x2.shape,y2.shape)

  from matplotlib import pyplot as plt

  plt.figure()

  for i in range(1,16):

  plt.subplot(3,5,i)

  plt.imshow(x1[i])

  print(y1[i])

  plt.show()

  2. layer.py

  # coding: utf-8

  # 2019/7/21 9:22

  import numpy as np

  class Layer:

  def __init__(self,nL,nL_1,activ,activ_deri, learning_rate):

  #参数分别表示:当前层神经元个数,前一层神经元个数,激活函数,激活函数的导函数,学习率

  self.nL = nL

  self.nL_1 = nL_1

  self.g = activ

  self.g_d = activ_deri

  self.alpha = learning_rate

  self.W = np.random.randn(nL,nL_1)*0.01

  self.b = np.random.randn(nL,1)*0.01

  #正向传播:

  #1、计算Z=WX+b

  #2、计算A=g(Z)

  def forward(self,AL_1):

  self.AL_1 = AL_1

  assert (AL_1.shape[0] == self.nL_1)

  self.Z = np.dot(self.W,AL_1)+self.b

  assert (self.Z.shape[0] == self.nL)

  AL = self.g(self.Z)

  return AL

  #反向传播:

  #1、m表示样本个数

  #2、计算dZ,dW,db,dAL_1

  #3、梯度下降,更新W和b

  def backward(self,dAL):

  assert (dAL.shape[0] == self.nL)

  m = dAL.shape[1]

  dZ = np.multiply(dAL,self.g_d(self.Z))

  assert (dZ.shape[0] == self.nL)

  dW = np.dot(dZ,self.AL_1.T)/m

  assert (dW.shape == (self.nL,self.nL_1))

  db = np.mean(dZ,axis=1,keepdims=True)

  assert (db.shape == (self.nL,1))

  dAL_1 = np.dot(self.W.T,dZ)

  assert (dAL_1.shape[0] == self.nL_1)

  #梯度下降

  self.W -= self.alpha*dW

  self.b -= self.alpha*db

  return dAL_1

  3. network.py

  # coding: utf-8

  # 2019/7/21 10:45

  import numpy as np

  class Network:

  def __init__(self,layers,loss,loss_der):

  self.layers = layers

  self.loss = loss

  self.loss_der = loss_der

  #根据输入的数据来调用正向传播函数,不断更新A,最后得到预测结果

  def predict(self,X):

  A = X

  for layer in self.layers:

  A = layer.forward(A)

  return A

  #连接每个层组建网络:

  #1、根据输入的数据进行正向传播,得到预测结果Y_predict

  #2、根据Y_predict和真实值Y,通过损失函数来计算成本值J

  #3、根据J来计算反向传播的输入值dA

  #4、调用反向传播函数来更新dA

  def train(self,X,Y,epochs=10):

  for i in range(epochs):

  Y_predict = self.predict(X)

  J = np.mean(self.loss(Y, Y_predict))

  print('epoch %d:loss=%f'%(i,J))

  dA = self.loss_der(Y,Y_predict)

  for layer in reversed(self.layers):

  #更新dA

  dA= layer.backward(dA)

  4. loss.py

  # coding: utf-8

  # 2019/7/21 11:34

  import numpy as np

  #交叉熵损失函数

  def cross_entropy(y, y_predict):

  y_predict = np.clip(y_predict,1e-10,1-1e-10) #防止0*log(0)出现。导致计算结果变为NaN

  return -(y * np.log(y_predict) + (1 - y) * np.log(1 - y_predict))

  #交叉熵损失函数的导函数

  def cross_entropy_der(y,y_predict):

  return -y/y_predict+(1-y)/(1-y_predict)

  5. activation.py

  # coding: utf-8

  # 2019/7/21 9:49

  import numpy as np

  def sigmoid(z):

  return 1 / (1 + np.exp(-z))

  #sigmoid导函数

  def sigmoid_der(z):

  x = np.exp(-z)

  return x/((1+x)**2)

  def relu(z):无锡妇科医院 http://www.xasgyy.net/

  return np.maximum(0,z)

  #relu导函数

  def relu_der(z):

  return (z>=0).astype(np.float64)

  6. train.py

  # coding: utf-8

  # 2019/7/21 12:13

  import data,layer,loss,network,activation

  import pickle,time

  #对数据集进行训练并保存模型

  #1、搭建3层网络层

  #2、将3个层组建成网络

  #3、获取训练集数据

  #4、对输入值X进行预处理

  #5、将数据输入网络进行训练,epochs为1000

  #6、将整个模型保存

  if __name__ == '__main__':

  learning_rate = 0.01

  L1 = layer.Layer(1000,64*64*3, activation.relu, activation.relu_der, learning_rate)

  L2 = layer.Layer(500,1000,activation.relu, activation.relu_der, learning_rate)

  L3 = layer.Layer(1,500, activation.sigmoid, activation.sigmoid_der, learning_rate)

  net = network.Network([L1,L2,L3], loss.cross_entropy, loss.cross_entropy_der)

  X,Y = data.get_train()

  X = data.preprocess(X)

  net.train(X,Y,1000)

  with open('models/model_%s.pickle'%(time.asctime().replace(':','_').replace(' ','-')),'wb') as f:

  pickle.dump(net,f)

  7. evaluate.py

  # coding: utf-8

  # 2019/7/21 14:17

  import data

  import pickle

  import numpy as np

  if __name__ == '__main__':

  model_name = 'model_Sun-Jul-21-14_41_42-2019.pickle'

  #导入模型

  with open('models/'+model_name,'rb') as f:

  net = pickle.load(f)

  #获取测试数据集

  X,Y = data.get_test()

  X = data.preprocess(X)

  #根据输入数据X进行预测

  Y_predict = net.predict(X)

  Y_pred_float = (Y_predict>0.5).astype(np.float64)

  #计算精确度

  accuracy = np.sum(np.equal(Y_pred_float,Y).astype(np.int))/Y.shape[0]

  print('accuracy:',accuracy)

  结果

  

python搭建多层神经网络_第2张图片