- 概率图模型(PGM)综述
医学影像处理
概率图模型概率图模型综述
RefLink:http://www.sigvc.org/bbs/thread-728-1-1.htmlGraphicalModel的基本类型基本的GraphicalModel可以大致分为两个类别:贝叶斯网络(BayesianNetwork)和马尔可夫随机场(MarkovRandomField)。它们的主要区别在于采用不同类型的图来表达变量之间的关系:贝叶斯网络采用有向无环图(DirectedAc
- 【机器学习】朴素贝叶斯网络的基本概念以及朴素贝叶斯网络在python中的实例
Lossya
机器学习python人工智能算法朴素贝叶斯
引言文章目录引言一、朴素贝叶斯网络1.1基本概念1.1.1节点1.1.2边(Edges)1.1.3条件独立性1.2特点1.2.1结构简单1.2.2易于理解和实现1.2.3计算效率高1.3应用1.4数学表示1.5局限性二、朴素贝叶斯网络在python中的实例2.1实例背景2.2实现步骤2.3python代码2.4代码解释三、概率推断在医疗领域中的使用3.1概率推断在医疗领域的使用3.2自动化推断的优
- 机器学习_15_贝叶斯算法
少云清
机器学习机器学习算法概率论贝叶斯算法
文章目录1贝叶斯定理相关公式2朴素贝叶斯算法2.1朴素贝叶斯算法推导2.2朴素贝叶斯算法流程3高斯朴素贝叶斯4伯努利朴素贝叶斯5多项式朴素贝叶斯6贝叶斯网络6.1最简单的一个贝叶斯网络6.2全连接贝叶斯网络6.3“正常”贝叶斯网络6.4实际贝叶斯网络:判断是否下雨6.5贝叶斯网络判定条件独立-016.6贝叶斯网络判定条件独立-026.7贝叶斯网络判定条件独立-031贝叶斯定理相关公式**先验概率P
- 《机器人SLAM导航核心技术与实战》第1季:第7章_SLAM中的数学基础
小虎哥哥爱学习
机器人人工智能自动驾驶计算机视觉概率论
视频讲解【第1季】7.第7章_SLAM中的数学基础-视频讲解【第1季】7.1.第7章_SLAM中的数学基础_SLAM发展简史-视频讲解【第1季】7.2.第7章_SLAM中的数学基础_SLAM中的概率理论-视频讲解【第1季】7.3.第7章_SLAM中的数学基础_估计理论-视频讲解【第1季】7.4.第7章_SLAM中的数学基础_基于贝叶斯网络的状态估计-视频讲解【第1季】7.5.第7章_SLAM中的数
- 经典分类CNN模型系列其一:Alexnet
manofmountain
介绍传统的机器学习分类模型像SVM,逻辑回归,决策树,甚至贝叶斯网络等在CNN推动的深度学习近几年大肆发展之后,都已纷纷被秒成了渣。这一切都始于2012年。Alexnet的横空出世及其在ILSVRC2012Imagenet数据集分类大赛中表现出的摧枯拉朽的领先正式宣告了深度学习纪元的开启。其实CNN模型并非啥新玩意,早在1997年Yang,Lecun就有实现过一个CNN模型并将之用于类似于MNST
- 书生·浦语大模型实战1
__如果
人工智能
书生·浦语大模型全链路开源体系视频链接:书生·浦语大模型全链路开源体系_哔哩哔哩_bilibili大模型之所以能收到这么高的关注度,一个重要原因是大模型是发展通用人工智能的重要途径深度信念网络:(1)又被称为贝叶斯网络,是一种有向无环图(2)可以在任意叶子节点生成无偏的样本集合(3)通过不断积累RBM(受限玻尔兹曼机)形成。每当一个RBM被训练完成时,其隐藏单元又可以作为后一层RBM的输入(4)D
- .【机器学习】隐马尔可夫模型(Hidden Markov Model,HMM)
十年一梦实验室
机器学习人工智能
概率图模型是一种用图形表示概率分布和条件依赖关系的数学模型。概率图模型可以分为两大类:有向图模型和无向图模型。有向图模型也叫贝叶斯网络,它用有向无环图表示变量之间的因果关系。无向图模型也叫马尔可夫网络,它用无向图表示变量之间的相关关系。概率图模型可以用于机器学习,人工智能,自然语言处理,计算机视觉,生物信息学等领域。一、马尔科夫模型随机过程马尔科夫过程马尔科夫链状态转移矩阵通过训练样本学习得到,采
- 基于贝叶斯决策理论的分类器
CHENG-HQ
机器学习机器学习贝叶斯分类器参数估计
基于贝叶斯决策理论的分类器基于贝叶斯决策理论的分类器贝叶斯决策理论1如何衡量分类好坏参数估计1极大似然估计2最大后验概率估计3最大熵估计4非参数估计贝叶斯分类器在现实中的应用1垃圾邮件分类2贝叶斯网络参考文献首先,我们知道机器学习分为监督学习和非监督学习两大类。在监督学习中,我们主要面对的是拟合问题(regression)和分类问题(classification)。在本节中,我们先来了解一下如何使
- 贝叶斯推断:细谈贝叶斯变分和贝叶斯网络
一碗姜汤
贝叶斯推断人工智能机器学习
1.贝叶斯推断统计推断这件事大家并不陌生,如果有一些采样数据,我们就可以去建立模型,建立模型之后,我们通过对这个模型的分析会得到一些结论,不管我们得到的结论是什么样的结论,我们都可以称之为是某种推断。对于数据和未知参数,频率学派会建立起关于数据的模型,模型当中会有我们的参数,如果我们把参数看成是确定的未知量。我们就可以用频率学派的观点来进行推断了。此时数据是随机量,参数是确定量,我们用数据来估计参
- 机器学习-贝叶斯网络
alstonlou
机器学习人工智能
贝叶斯分类器贝叶斯网络是通过假设数据的先验分布,利用贝叶斯公式计算后验概率,将样本根据概率进行分类。常用贝叶斯网络:1.朴素贝叶斯分类器;2.半朴素贝叶斯分类器;3.贝叶斯网;4.EM算法朴素贝叶斯分类器:纯粹贝叶斯公式进行后验分布计算,从而完成对样本的分类半朴素贝叶斯分类器:为了降低贝叶斯公式中估计后验概率的困难,朴素贝叶斯分类器中采用的是属性条件独立的假设,但是在现实中往往很难成立。而半朴素贝
- 机器学习的算法简单介绍-朴素贝叶斯算法
Algorithm_Engineer_
机器学习机器学习算法人工智能
朴素贝叶斯网络(NaiveBayesNetwork)与贝叶斯网络(BayesianNetwork)有一些不同之处,让我们来澄清一下这两个概念。贝叶斯网络(BayesianNetwork):贝叶斯网络是一种用于建模概率关系的图模型。它使用有向无环图(DAG)来表示一组变量之间的依赖关系,并通过概率分布来量化这些依赖关系。节点表示变量,边表示变量之间的依赖关系。每个节点都与其父节点相关,而给定父节点的
- 【读书笔记】网空态势感知理论与模型(三)
xian_wwq
安全网空态势
7.3方向3的研究成果(态势知识融合)7.3.1使用贝叶斯网络实现网空态势融合提出了两种使用BN的网空态势感知的方法:(1)构建跨层的贝叶斯网络,推断出云环境企业“孤岛”之间的隐蔽连接“桥梁”;在云环境中实现网空态势感知,是一个非常重要的新兴研究领域。在孤立的企业网络“岛屿”之间可能会构建隐蔽连接的“桥梁”。通过隐性的“桥梁”,原先限制在企业网络内部的攻击路径,能够跨越至云环境中的另一个企业的网络
- 机器学习 (第9章 概率图模型)
komjay
机器学习人工智能
一、学习目标1.学习概率图模型中两种重要的模型:贝叶斯网络和马尔科夫随机场2.学习使用概率图模型去进行实际问题的学习与推断3.学习近似推断二、贝叶斯网络概率图模型基于图,而图这种数据结果分为两种:有向图和无向图,针对有向(无环)图结构,实现的是贝叶斯网络,针对无向图,则为马尔可夫随机场。1.有向无环图根据图中每个结点不同,可提取出不同的相关结点,如以x3为例2.联合概率分布我们之所以搞出这么一个图
- 输出笔记:贝叶斯定理Python实现+个人理解
不想放开的骆驼
写这篇笔记的来源:image昨天晚上在朋友圈刷到了朋友用R画的贝叶斯网络(也就是上图,图片已拿到授权。选的节点很多,个人觉得像宇宙,交叉的点不断的向外边发送信号,还怪好看的)。这时想起了,自己收藏夹有贝叶斯定理的解析(以前只是收藏了,没看,逃。)然后用Python实现一个简单的贝叶斯定理的脚本。也是为了验证下是否理解了贝叶斯定理。贝叶斯定理介绍:Steve很害羞而且性格孤僻,虽然乐于助人,但却对周
- 贝叶斯参数学习
温稳稳不稳
贝叶斯网络概率论
贝叶斯网络的参数学习1导语hellohello,大家好在之前的推文中,我们见过完整的贝叶斯网络;也展示了在有一定证据的情况下,如何使用贝叶斯网络进行推断但在手头没有贝叶斯网络的时候,如何通过手头的数据构建一个贝叶斯网络呢?1.2相关概念1.2.1贝叶斯网络参数学习问题分类回想:贝叶斯网络=有向图+概率关于贝叶斯网络的学习,主要分为以下5种情况[1]:已知:有向图+完整数据待求:概率已知:完整数据待
- R语言贝叶斯网络模型、INLA下的贝叶斯回归、R语言现代贝叶斯统计学方法、R语言混合效应(多水平/层次/嵌套)模型
WangYan2022
R语言数据语言贝叶斯R语言现代贝叶斯统计学INLA混合效应模型
目录㈠基于R语言的贝叶斯网络模型的实践技术应用㈡R语言贝叶斯方法在生态环境领域中的高阶技术应用㈢基于R语言贝叶斯进阶:INLA下的贝叶斯回归、生存分析、随机游走、广义可加模型、极端数据的贝叶斯分析㈣基于R语言的现代贝叶斯统计学方法(贝叶斯参数估计、贝叶斯回归、贝叶斯计算)实践㈤R语言混合效应(多水平/层次/嵌套)模型及贝叶斯实现更多应用㈠基于R语言的贝叶斯网络模型的实践技术应用贝叶斯网络不但能够统
- 4--贝叶斯 聚类算法
pepsi_w
周报算法聚类机器学习
本周学习内容:学习贝叶斯网相关知识学习集成学习部分内容学习聚类任务及其相关算法1贝叶斯网半朴素贝叶斯中规定每一个特征可以依赖于另外一个特征,贝叶斯网络在半朴素贝叶斯的基础上更进一步,认为每个特征都可以依赖于另外多个特征。贝叶斯网络实际上是一个有向无环图,图中包含贝叶斯网络的结构和参数,带有方向的边从父特征出发,指向子特征,代表子特征依赖于父特征。贝叶斯网中三个变量之间的典型依赖关系如图1所示:图1
- 机器学习算法基础——分类模型(二)
三翼鸟数字化技术团队
机器学习算法分类人工智能
引言上回我们讨论了机器学习中的三种重要的分类模型:Logistic回归、朴素贝叶斯、贝叶斯网络,并对这三种模型的数学推导和实例实现有了一个深刻的认识。今天我们继续介绍另外两种基础的分类算法:决策树和随机森林,本期分享的主要任务就是要讨论决策树的生成方法,包括ID3算法、C4.5算法和CART算法,并通过清晰易懂的应用实例解释说明算法的实现细节。相信有了决策树基础,后面再进行随机森林的构建就会变得非
- 03-IF6+:纯生信基于网络互作结合基因表达谱、拷贝数变异数据鉴定多发性骨髓瘤标志物
AAA肿瘤信息学王协
MM:多发性骨髓瘤(MultipleMyeloma)CNV:拷贝数改变(copynumbervariation)MMRC:多发性骨髓瘤研究组织(theMultipleMyelomaResearchConsortium)M3CN:多发性骨髓瘤分子关系网络(multiplemyelomamolecularcausalnetwork)RIMBANet:重构整合的分子贝叶斯网络(Reconstructin
- 【机器学习】11、贝叶斯网络
呆呆的猫
机器学习经典算法
文章目录一、贝叶斯网络是什么二、朴素贝叶斯三、贝叶斯网络的建立一、贝叶斯网络是什么贝叶斯网络的思考:原本的问题:给定一组样本D,求得在这些样本中出现某个结论A1,A2,...,AnA_1,A_2,...,A_nA1,A2,...,An出现的概率,也就是P(Ai∣D)P(A_i|D)P(Ai∣D),表示求得给定数据后,哪个结论出现的概率最大。问题转化:maxP(Ai∣D)=maxP(D∣Ai)P(A
- 机器学习入门六(贝叶斯网络数据分类)
朱笨笨
机器学习入门机器学习分类人工智能
老师要求做一个因果分析,没有思路。目前作者了解到了辛普森悖论,所以想找一个比较合适的方法做一下因果分析,于是找到了《Python机器学习算法与实战》这本书看了一眼里面的内容,偷学了一手贝叶斯网络书数据分类方法哈哈哈。文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言贝叶斯网络处理一些分类问题,同时尝试用贝叶斯网络做因果分析。本文采用的数据集仍未泰坦尼克号幸存者数据集。一
- 贝叶斯网络 (人工智能期末复习)
倒杯Whisky
人工智能人工智能贝叶斯网络D分离法条件概率表贝叶斯网络独立性
文章目录贝叶斯网络(概率图模型)定义主要考点例题-要求画出贝叶斯网络图-计算各节点的条件概率表-计算概率-分析独立性贝叶斯网络(概率图模型)定义一种简单的用于表示变量之间条件独立性的有向无环图(DAG)。主要考点给出一定表述,要求画出贝叶斯网络图;给出每个节点的条件概率表;使用贝叶斯网络计算概率;分析贝叶斯网络的独立性;例题-要求画出贝叶斯网络图臭鸡蛋(E)或灾难后动物的尸体(M)都会发出一种奇怪
- 贝叶斯网络在R语言中的应用
CodeMaven
r语言开发语言R语言
贝叶斯网络是一种概率图模型,用于建模变量之间的依赖关系。它在许多领域都有广泛的应用,包括机器学习、人工智能和统计分析等。本文将介绍如何在R语言中使用贝叶斯网络进行建模和推断,并提供相应的源代码示例。首先,我们需要安装并加载相关的R包。在R中,有几个包可以用于构建和分析贝叶斯网络,如bnlearn和gRain等。这里我们以bnlearn包为例进行说明。#安装bnlearn包install.packa
- 【深度学习】概率图模型(二)有向图模型详解(条件独立性、局部马尔可夫性及其证明)
QomolangmaH
深度学习人工智能贝叶斯网络局部马尔可夫性条件独立性概率图
文章目录一、有向图模型1.贝叶斯网络的定义2.条件独立性及其证明a.间接因果关系X3→X2→X1X_3\rightarrowX_2\rightarrowX_1X3→X2→X1b.间接果因关系X1→X2→X3X_1\rightarrowX_2\rightarrowX_3X1→X2→X3c.共因关系X1←X2→X3X_1\leftarrowX_2\rightarrowX_3X1←X2→X3d.共果关系
- 【深度学习】概率图模型(一)概率图模型理论简介
QomolangmaH
深度学习深度学习概率论人工智能概率图模型贝叶斯网络马尔可夫随机场
文章目录一、概率图模型1.联合概率表2.条件独立性假设3.三个基本问题二、模型表示1.有向图模型(贝叶斯网络)2.无向图模型(马尔可夫网络)三、学习四、推断 概率图模型(ProbabilisticGraphicalModel,PGM)是一种用图结构来表示和推断多元随机变量之间条件独立性的概率模型。图模型提供了一种直观且有效的方式来描述高维空间中的概率分布,通过图结构表示随机变量之间的关系,使得模
- 机器学习---贝叶斯网络与朴素贝叶斯
三月七꧁ ꧂
机器学习机器学习人工智能
1.贝叶斯法则如何判定一个人是好人还是坏人?当你无法准确的熟悉一个事物的本质时,你可以依靠与事物特定本质相关的事件出现的次数来判断其本质属性的概率。如果你看到一个人总是做一些好事,那这个人就越可能是一个好人。数学语言表达就是:支持某项属性的事件发生得越多,则该属性成立的可能性就越大。贝叶斯法则来源于英国数学家贝叶斯(ThomasBayes)在1763年发表的著作《论有关机遇问题的求解》。贝叶斯法则
- 人工智能:一种现代的方法 第十四章 概率推理
一只大小菜
人工智能:一种现代的方法人工智能
文章目录人工智能:一种现代的方法第十四章概率推理本章前言14.1不确定性问题域中的知识表示14.1.1联合概率分布14.1.2贝叶斯网络14.2贝叶斯网络的语义14.2.1表示联合概率分布14.2.2紧致性14.2.3节点排序14.2.4贝叶斯网络中的条件独立关系14.3条件分布的有效表示14.4贝叶斯网络的精确推理14.4.1通过枚举进行推理14.4.2变量消元算法14.4.5精确推理的复杂度1
- 斯坦福经典AI课程CS 221官方笔记来了!机器学习模型、贝叶斯网络等重点速查...
zenRRan
来源:新智元、Stanford作者:鹏飞斯坦福大学的人工智能课程“CS221”,这门铁打的课程从2011年开始已经走过了8个年头,流水的讲师换了一批又一批,送走的毕业生一拨又一拨,至今仍然是人工智能学习的经典课程之一。目前2019年春季课程正在如火如荼的开展中。这门课程是没有教科书的,所有内容都蕴含在讲师的教案以及课后作业中。不过为了方便广大不能亲临现场听讲的同学,课程官方推出了课程笔记Cheat
- 贝叶斯网络结构学习方法简介
打你个大屁股
人工智能人工智能贝叶斯
题目:贝叶斯网络结构学习方法简介贝叶斯网络(Bayesiannetwork,BN)结构学习就是从给定的数据集中学出贝叶斯网络结构,即各节点之间的依赖关系;只有确定了结构才能继续学得网络参数,即表示各节点之间依赖强弱的条件概率。对于普通人来说(非贝叶斯网络的专业研究人员,仅一般使用者),希望的是能够有那么一个函数,函数的输入是数据集,输出即为贝叶斯网络结构。目前确实有很多贝叶斯网络工具箱,但新人上手
- 【机器学习6】概率图模型
猫头不能躺
《百面机器学习》机器学习人工智能
用观测结点表示观测到的数据,用隐含结点表示潜在的知识,用边来描述知识与数据的相互关系,最后基于这样的关系图获得一个概率分布。概率图中的节点分为隐含节点和观测节点,边分为有向边和无向边。从概率论的角度,节点对应于随机变量,边对应于随机变量的依赖或相关关系,其中有向边表示单向的依赖,无向边表示相互依赖关系。概率图模型分为贝叶斯网络(BayesianNetwork)和马尔可夫网络(MarkovNetwo
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc